Geoscience Reference
In-Depth Information
[73] R.A. Laudise, A.A. Ballman, Hydrothermal synthesis of sapphire, J. Am. Chem. Soc.
80 (1958) 2655 2657.
[74] R.R. Monchamp, R.C. Puttbach, J.W. Nielson, Hydrothermal growth of iapphite,
J. Cryst. Growth 2 (1968) 178 187.
[75] V.S. Balitskii, E.E. Lisinstina, Synthetic Analog and Imitation of Natural Gemstones,
Nedra, Moscow, 1981.
[76] Wiley-VCH Encyclopedia of Laser Physics and Technology, 2011.
http://www.rp-
,
photonics.com/titanium_sapphire_lasers.html . .
[77] D.F. Bliss, B. Wang, M.J. Callahan, Hydrothermal synthesis and growth of Ti:sapphire
(Ti 3 1 :Al 2 O 3 ) laser crystals, J. Cryst. Growth 311 (2009) 443 447.
[78] J.H. Adair, S.B. Cho, N.S. Bell, A.J. Perrotta, Recent developments in morphological
control of alpha-Al 2 O 3 particles synthesized in 1,4-butanediol solution, J. Dispersion
Sci. Tech 22 (2001) 143 165.
[79] J. Yang, S. Mei, J.M.F. Ferreira, Hydrothermal synthesis of submicrometer alpha-
alumina from seeded tetraethylammonium hydroxide-peptized aluminum hydroxide,
J. Amer. Ceram. Soc. 86 (2003) 2055 2058.
[80] W.L. Suchanek, Development of Hydrothermal Production of New Materials, Crystal
Illuminations, A Publication of Sawyer Research Products, Inc., May 2003.
[81] G. Demazeau, Hydrothermal and solvothermal processes: the main physico-chemical
factors involved and new trends, Res. Chem. Intermed. 37 (2011) 107 123.
[82] V.A. Kuznetsov, Oxides of titanium subgroup metals, Crystallization Processes Under
Hydrothermal Conditions, Consultants Bureau, New York, NY, 1973, pp. 43 55.
[83] I.N. Anikin, I.A. Naumova, G.V. Rumyantseva, Hydrothermal Synthesis of Native
Elements and Simple Oxides, Kristallografia 10 (1965) 231 235.
[84] M.L. Harvill, R. Roy, H.S. Peiser (ed.) Crystal Growth, J. Phys. Chem. Solids (Suppl. 1)
(1967) 563 568.
[85] V.A. Kuznetsov, V.V. Panteleev, Hydrothermal synthesis of rutile, Kristallografia 10
(1965) 445 448.
[86] V.A. Kuznetsov, Crystallization of titanium, zirconium and hafnium oxides and some
titanate and zirconate compounds under hydrothermal conditions, J. Cryst. Growth 3/4
(1968) 405
410.
[87] J.D. McCullough, K.N. Trueblood, The crystal structure of baddeleyite (monoclinic
ZrO 2 ), Acta Crystallogr. 12 (1959) 507 511.
[88] A.M. Alper, Refractory Materials, 2, Academic Press, London, 1970.
[89] K. Nassau, Cubic zirconia, the latest diamond imitation and skull melting, Lapidary J.
31 (1977) 900 904922 926.
[90] M. Mann, J. Kolis, Hydrothermal crystal growth of yttrium and rare earth stabilized
hafnia, J. Cryst. Growth 312 (2010) 461 465.
[91] R.D. Schuilling, B.W. Vink, Stability relation of some titanium minerals (sphene,
perovskite, rutile, anatase), Geochim. Cosmochim. Acta 31 (1967) 2399 2411.
[92] V.I. Popolitov, A.N. Lobachev, Crystallization of paratellurite under hydrothermal con-
ditions, Izv. Akad. Nauk USSR Inorg. Mater. 18 (1972) 960 961.
[93] E.D. Kolb, R.A. Laudise, The hydrothermal crystallization of paratellurite, α -TeO 2 ,
Mater. Res. Bull. 8 (1973) 1123 1130.
[94] J. Zubertz, Hydrothermal Synthesis of Native Elements and Simple Oxides, Krist.
Techn. 4 (1969) 221.
[95] V.I. Popolitov, Kh.M. Kurbanov, O.N. Zverkova, M.N. Zeitlin, Hydrothermal
Synthesis of Complex Oxides, Dokl. Akad-Nauk Tazhakisthan USSR 18 (1975)
21 24.
Search WWH ::




Custom Search