Geoscience Reference
In-Depth Information
[53a] Lobachev et al., Factors Affecting Involved Repeat Stimulation in Recomination and
Deletion, In: T. Hiep Tran.: in Saccharomyces Cerevisiae, Gen. Soc. Am., (1982)
1 18.
[54] A.N. Lobachev, I.P. Kuz'mina, Y.V. Shaldin, Zinc oxide: growth and some physical
properties, Crystal Growth From High Temperature Aqueous Solutions, Nauka,
Moscow, 1977, pp. 158
177.
[55] J.W. Nielsen, E.E. Dearborn, The growth of large single crystals of zinc oxide, J. Phys.
Chem. 64 (1960) 1762 1763.
[56] R.A. Laudise, A.A. Ballman, Hydrothermal synthesis of zinc oxide and zinc sulphide,
J. Phys. Chem. 64 (1960) 688 691.
[57] M.M. Lyukina, V.E. Khaji, Kinetics of crystallization of zincite under hydrothermal
conditions, Crystal Growth, vol. 4, Nauka, Moscow, 1964, pp. 151 156.
[58] D.E. Croxall, R.C. Ward, C.A. Wallace, R.C. Kell, Hydrothermal growth and investi-
gation of highly doped zinc oxide crystals of high purity and perfect, J. Cryst. Growth
22 (1974) 117 124.
[59] N. Sakagami, Hydrothermal growth and characterization of ZnO single crystals of high
quality, J. Cryst. Growth 99 (1990) 905 909.
[60] I.P. Kuz'mina, Investigation of the Crystallization of Germanates and Zincogermanates of
Na and K Under Hydrothermal Conditions, Ph.D. Thesis, Institute of Crystallography,
Academy Nauka, USSR, 1968.
[61] D. Rykl, J. Bauer, Hydrothermal synthesis von zinkit, Krist. Techn. 3 (1968) 375 384.
[62] B.G. Wang, E.W. Shi, W.Z. Zhong, Understanding and controlling the morphology of
ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 32 (1997) 659 667.
[63] R.A. Laudise, E.D. Kolb, A.J. Caporaso, Hydrothermal growth of large sound crystals
of zinc oxide, J. Am. Ceram. Soc. 47 (1964) 9 12.
[64]
I.L. Khodakovsky, A.E. Elkin, Experimental determination of zincite solubility in
water and NaOH aqueous
temperatures, 100, 150, and 200 C,
solutions at
Geochemistry 10 (1975) 1490 1497.
[65] L.N. Demianets, D.V. Kostomarov, Mechanism of zinc oxide single crystal growth
under hydrothermal conditions, Ann. Chim. Sci. Mat. 26 (2001) 193 198.
[65a] D. Ehrentraut, Technology of Gallium Nitride Crystal Growth, D. Ehrentraut, E.
Meissner, M. Bockowski (Eds), Springer-Verlag, New York, LLC, (2010).
[66] R.L. Barnes, R.A. Laudise, R.M. Shields, The solubility of corundum in basic hydro-
thermal solvents, J. Phys. Chem. 67 (1963) 835 840.
[67] G. Yamaguchi, H. Yanagida, S. Sojma, Hydrothermal Growth of Polyscale Crystals,
Bull. Soc. Chem. Japan 35 (1962) 1789 1791.
[67a] R.A. Laudise and R.L. Parker, The Growth of Single Crystals, Rost monokristallov,
Mir. Moscow, 540 (1974) 2.
[68] R.A. Laudise, Growth of Single Crystals, Prentice-Hall, New Jersey, 1970, pp. 289,
291 292.
[69] K.F. Kashkurov, P.I. Nikitichev, V.V. Osipov, L.D. Sizova, A.V. Simonov, Growth of
large corundum crystals by the hydrothermal method, Sov. Phys. Crystal. 12 (1968)
837 839.
[70] V.N. Rymyanstev, I.G. Ganeev, I.C. Rez, SiO 2 in alkali and carbonate solutions,
Crystal Growth, vol. 9, Nauka, Moscow, 1972, pp. 51 54.
[71] V.G. Thomas, On a mechanism of substance transfer under the hydrothermal growth of
corundum crystals in bicarbonate solutions, Geol. Geophys. 37 (1996) 96 99.
[72] V.A. Kuznetsov, A.A. Shternberg, Crystallization of ruby under hydrothermal condi-
tions, Sov. Phys. Crystal. 12 (1967) 280 285.
Search WWH ::




Custom Search