Geoscience Reference
In-Depth Information
[69] P.C. Hess, The role of high field strength cations in silicate melts, in: I. Kushiro,
I. Perchuk (Eds), Advances in Physical Geochemistry, Springer-Verlag, New
York, NY, 1986.
[70] F.J. Ryerson, P.C. Hess, The role of P 2 O 5 in silicate melts, Geochim. Cosmochim.
Acta 44 (1980) 611 624.
[71] B.O. Mysen, F. Ryerson, D. Virgo, The structural role of phosphorus in silicate melts,
Am. Mineral. 66 (1981) 106
117.
[72] M. Huffman, A. Navrotsky, F.S. Pintchovski, Thermochemistry and structure of low
pressure chemically vapor deposited and bulk SiO 2 P 2 O 5 and SiO 2 GeO 2 glasses,
J. Electrochem. Soc. 133 (1986) 431 439.
[73] C.W Burnham, H. Nekvasil, Equilibrium properties of granite pegmatite magmas, Am.
Mineral. 71 (1986) 239 263.
[74] P.J. Wyllie, O.F. Tuttle, Experimental investigation of silicate systems containing two
volatile components, Part III: the effects of SO 3 ,P 2 O 5 , HCl and Li 2 O, in addition to
H 2 O, on the melting temperatures of albite and granite, Am. J. Sci. 262 (1964)
930 939.
[75] P. Cerny, Petrogenesis of granitic pegmatites, in: P. Cerny (Ed.), Granitic Pegmatites
in Science and Industry, Mineralogical Association of Canada, Quebec, Canada, 1982,
pp. 405 461.
[76] D. London, Experimental phase equilibria in the system LiAlSiO 4 a SiO 2 a H 2 O: a pet-
rogenetic grid for lithium-rich pegmatites, Am. Mineral. 69 (1984) 995 1004.
[77] G.B. Morgan, Alteration of Amphibolitic Wallrocks Around the Tanco Rare Element
Pegmatite, Manitoba. M.S. Thesis, University of Oklahoma, VI, 1986.
[78] P.M. Fenn, On the origin of graphic granite, Am. Mineral. (71) (1986) 325 330.
[79] A.S. Quist, W.L. Marshall, Electrical conductances of aqueous sodium chloride solu-
tions from 0 to 800 C and to pressures to 4000 bars, J. Phy. Chem. 72 (1968) 684 703.
[80] W.L. Marshall, J.D. Frantz, Electrical conductance measurements of dilute, aqueous
electrolytes at temperatures to 800 C and to pressures to 400 bars: techniques and
interpretations, in: G.C. Ulmer, H.L. Barnes (Eds), Hydrothermal Experimental
Techniques, John Wiley & Sons, New York, NY, 1987, pp. 261 292.
[81] H. Takahashi, K. Nakatuka, Advanced geothermal energy utilization for geochemical
energy utilization for geochemical reactor, in: T. Moriyoshi (Ed.), Proceedings of the
First
International Conference on Solvothermal Reactions, Takamatsu,
Japan,
December 5 7, 1994, pp. 71 75.
[82] K. Nakatsuka, Geothermal reactor—concept and perspectives, in: T. Moriyoshi (Ed.),
Proceedings of the Second International Conference on Solvothermal Reactions,
Takamatsu, Japan, December 18 20, 1996, p. 156.
[83] PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA. , www.parc.com . .
[84] J.B. Corliss, Metallogenesis at oceanic spreading centres, J. Geol. Soc. London. 136
(1979) 621 626.
[85] D.J. Fornari, R.W. Embley, Tectonic and volcanic controls on hydrothermal processes
at the mid-ocean ridge: an overview based on near-bottom and submersible studies,
in: S.E. Humphris, R.A. Zierenberg, L.S. Mullineause, R.E. Thomson (Eds), Seafloor
Hydrothermal Systems Physical, Chemical, Biological and Geological Interactions,
American Geophysical Union, Washington, DC, 1995, pp. 1 46.
[86] D. Henley, cited by Gillings, A., Evolution of hydrothermal ecosystems on Earth (and
Mars?), Bioessays 18 (1996) 515 517.
[86a] D. Fornari, T. Shank, Surveying a subsea lava flow using the Autonomous Benthic
Explorer, Woods Hole Oceanographic Institute, Massachusetts, USA, 2003.
Search WWH ::




Custom Search