Geoscience Reference
In-Depth Information
[87] E.L. Shock, Chemical environments of submarine hydrothermal systems, Orig. Life
Evol. Biosph. 22 (1992) 67 107.
[88] J.A. Baross, S.E. Hoffman, Submarine hydrothermal vents and associated gradient
environments as sites for the origin and evolution of life, Orig. Life 15 (1985)
327 345.
[89] B.R.T. Simoneit, Aqueous organic geochemistry at high temperature/high pressure,
Orig. Life Evol. Biosph. 22 (1992) 43
65.
[90] W. Martin, J. Baross, D. Kelley, M.J. Russell, Hydrothermal vents and the origin of
life, Nat. Rev. Microbiol. 6 (2008) 805 814.
[91] D.S. Kelley, J.A. Baross, J.R. Delaney, Volcanoes, fluids, and life at mid-ocean ridge
spreading centers, Annu. Rev. Earth Planet Sci. 30 (2002) 385 491.
[92] G. Proskurowski, M.D. Lilley, D.S. Kelley, E.J. Olson, Low temperature volatile pro-
duction at the Lost City hydrothermal field, evidence from a hydrogen stable isotope
geothermometer, Chem. Geol. 229 (2006) 331 343.
[93] G.L. Fr¨h-Green, D.S. Kelley, S.M. Bernasconi, J.A. Karson, K.A. Ludwig, D.A.
Butterfield, et al., 30,000 years of hydrothermal activity at the Lost City vent field,
Science 301 (2003) 495 498.
[94] K.A. Ludwig, D.S. Kelley, C. Shen, H. Cheng, R.L. Edwards, U/Th geochronology
of carbonate chimneys at the Lost City hydrothermal field, Eos. Trans. AGU, 86,
2005.
[95] U.R. Costa, W.S. Fyfe, R. Kerrich, M.W. Nesbitt, Archean hydrothermal talc evi-
dence for high ocean temperatures, Chemical Geol. 30 (1980) 341 349.
[96] S.E. Hoffman, J.A. Baross, Workshop on the Early Earth: The Interval from
Accretion to the Older Archean, vol. 34, Lunar and Planetary Institute, Houston, TX,
1984.
[97] D.H. Abbott, S.E. Hoffman, Archean plato tectonics revisited 1: heat flow, spreading
rate and age of subducting oceanic lithosphere and their effects on the origin and evo-
lution of continents, Tectonics 3 (1984) 429 448.
[98] H.W. Jannasch, Microbial interactions with hydrothermal fluids, in: S.E. Humphris,
R.A. Zierenberg, L.S. Mulineaux, R.E. Thomson (Eds), Seafloor Hydrothermal
Systems, American Geophysical Union, Washington, DC, 1995, pp. 273 296.
[99] P.A. Rona, K. Bostrom, L. Laubier, K.L. Smith Jr. (Eds), Hydrothermal Processes at
Seafloor Centers, NATO Conference Series, Plenum Press, New York, NY, 1983,
p. 796.
[100] B.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, R.E. Thomson (Eds), Seafloor
Hydrothermal Systems, Physical, Chemical, Biological and Geological Interactions,
American Geophysical Union, Washington, DC, 1995.
[101] M.D. Schulte, E.L. Shock, Thermodynamics of strecker synthesis in hydrothermal
systems, Orig. Life Evol. Biosph. 25 (1995) 161 173.
[102] E.L. Shock, Organic acids in hydrothermal solutions: standard molar thermodynamic
properties of carboxylic acids and estimates of dissociation constants at high tempera-
tures and pressures, Am. J. Sci. 295 (1995) 496 580.
[103] S.W. Fox, C.R. Windsor, Synthesis of amino acids by the heating of formaldehyde
and ammonia, Science 170 (1970) 984 985.
[104] W.L. Marshall, Possible geochemical production of biological precursors: amino acids
and other amines (also hydrocarbons) from aqueous ammonium carbonate solutions
and metal carbides at 200 C 300 C, EOS 68 (1987) 458.
[105] E.L. Shock, Geochemical constraints on the origin of organic compounds in hydro-
thermal systems, Orig. Life Evol. Biosph. 20 (1990) 331 367.
Search WWH ::




Custom Search