Geoscience Reference
In-Depth Information
[55] G.C. Kennedy, Pressure volume temperature relations in water at elevated tempera-
tures and pressures, Am. J. Sci. 248 (1950) 540 543.
[56] V.I. Popolitov, Hydrothermal synthesis of inorganic compounds, D.Sc. Thesis,
Hydrothermal Synthesis of Complex Oxides for Hydrothermal Growth, Institute of
Crystallography, Russian Academy of Sciences, Moscow, 1990.
[57] E.D. Kolb, P.L. Key, R.A. Laudise, E.E. Simpson, Pressure-Volume-Temperature
Behavior in the System H 2 O-NaOH-SiO 2 and its Relationship to the Hydrothermal
Growth of Quartz, Bell. Sys. Tech. J. 61 (1983) 639.
[58] W.L. Marshall, E.V. Jones, J. Jones, Liquid vapour critical temperatures of aqueous
electrolyte solutions, Inorg. Nucl. Chem. 36 (1974) 2313.
[59] R.A. Laudise, W.A. Sunder, R.F. Belt, G. Gashurov, Solubility and P V T relations
and the growth of potassium titanyl phosphate, J. Cryst. Growth 102 (1990) 427.
[60] R.F. Brebrick, Phase equilibria, in: D.T.J. Hurle (Ed.), Handbook of Crystal Growth,
vol. 1a, Elsevier Science, B.V., The Netherlands, 1993.
[61] A.J. Celestian, J.B. Parise, A. Clearfield, Crystal growth and ion exchange in titanium
silicates, in: G. Dhanarja, K. Byrappa, V. Prasad, M. Dudley (Eds.), Springer Handbook
of Crystal Growth, Springer, Heidelberg, Germany, 2010, pp. 1637 1662.
[62] S. Bernstein, K.T. Fehr, The formation of 1.13 nm tobermorite under hydrothermal
conditions: 1. The influence of quartz grain size within the system CaO SiO 2 D 2 O,
Prog. Cryst. Growth Charact. Mater. (2012)58 84 91.
[63] V. Middelkoop, S.D. Jacques, M.G. O'Brien, A.M. Beale, P. Barnes, Hydrothermal/
autoclave synthesis of AlPO-5: a prototype space/time study of crystallization gradi-
ents, J. Mat. Sci. 43 (2008) 2222 2228.
[64] K. Simmance, G. Sankar, R.G. Bell, C. Prestipino, W van Beek, Tracking the forma-
tion of cobalt substituted AlPO-5 using simultaneous in situ X-ray diffraction and X-
ray absorption spectroscopy techniques, Phys. Chem. Chem. Phys. 12 (2010) 559 562.
[65] S.D.M. Jacques, K. Pile, P. Barnes, An in situ synchrotron X-ray diffraction tomogra-
phy study of crystallization and preferred crystal orientation in a stirred reactor, Cryst.
Growth Des. 5 (2005) 395
397.
[66] V.A. Kuznetsov, A.N. Lobachev, Hydrothermal method for the growth of crystals,
Sov. Phys. Crystallgr. 17 (1973) 775
804.
[67] V.A. Kuznetsov, Hydrothermal crystallization kinetics of corundum, Sov. Phys.
Crystallogr. 10 (1966) 561 564.
[68] V.A. Kuznetsov, Kinetics of hydrothermal crystallization of corundum, II. Effect of
solvents on crystallization, Sov. Phys. Crystallogr. 12 (1968) 608 611.
[69] A.N. Lobachev, L.N. Demianets, I.P. Kuzmina, E.N. Emelianova, Investigation of the
solubility and crystallization kinetics of sodium-zinc germanate (Na 2 ZnGeO 4 ) under
hydrothermal conditions, J. Cryst. Growth 13/14 (1972) 540 544.
[70] V.I. Popolitov, A.N. Lobachev, Kinetics and structure aspect of the growth of single
crystals of bismuthinite under hydrothermal conditions, Sov. Phys. Crystallogr. 81
(1973) 131 132.
[71] R.A. Laudise, A.A. Ballman, Hydrothermal synthesis of zinc oxide and zinc sulfide,
J. Phys. Chem. 64 (1960) 688.
[72] A.A. Laudise, E.D. Kolb, A.J. Caporaso, Hydrothermal growth of large sound crystals
of zinc oxide, J. Amer. Ceram. Soc. 47 (1964) 9 12.
[73] E.D. Kolb, R.A. Laudise, Hydrothermally grown ZnO crystals of low and intermediate
resistivity, J. Amer. Ceram. Soc. 49 (1966) 302 305.
[74] N.Y. Ikornikova, Hydrothermal synthesis of crystals in chloride systems, D.Sc. Thesis,
Hydrothermal Synthesis and Characterization of Transition Metal (Mn and V) Oxides
Search WWH ::




Custom Search