Geoscience Reference
In-Depth Information
Containing Phosphates, Institute of Crystallography, Academy of Sciences, Moscow,
1970.
[75] O.Y. Samoilov, The Structure of Aqueous Solutions and the Hydration of Ions, Akad.
Nauk USSR Publication, Moscow, 1957.
[76] R.E. Riman, M.M. Lencka, L.E. McCandlish, B.L. Gersten, A. Andrenko, S.B. Cho,
Intelligent Engineering of Hydrothermal Reactions, in: Proceedings of the Second
International Conference on Solvothermal Reactions, Takamatsu, Japan, December
18 20, 1996, pp. 148 151.
[77] M.M. Lencka, A. Andrenko, R.E. Riman, Hydrothermal precipitation of lead zirconate
titanate solid solutions: thermodynamic modeling and experimental synthesis, J. Am.
Ceram. Soc. 78 (1995) 2609 2618.
[78] E.P. Staumbagh, J.F. Miller, Hydrothermal precipitation of high quality inorganic
oxides, in: S. Somiya (Ed.), Proceedings of the First International Symposium on
Hydrothermal Reactions, Gakujutsu Bunken Fukyu-Kai, Tokyo, Japan, 1983, pp.
858 871.
[79] S. Kaneko, F. Imoto, Synthesis of fine-grained barium titanate by a hydrothermal reac-
tion, Nippon Kagaku Kaishi 6 (1975) 985 990.
[80] N.A. Ovramenko, L.I. Shvets, F.D. Ovcharenko, B.Y. Kornilovich, Kinetics of hydro-
thermal synthesis of barium metatitanate, Izv. Akad. Nauk USSR Inorg. Mater. 15
(1979) 1982 1985.
[81] W. Hertl, Kinetics of barium titanate synthesis, J. Amer. Ceram. Soc. 71 (1988)
879 883.
[82] J.O. Eckert Jr., C.C. Hung-Houston, B.L. Gersten, M.M. Lencka, R.E. Riman, Kinetics
and mechanisms of hydrothermal synthesis of barium titanate, J. Amer. Ceram. Soc. 79
(1996) 2929 2939.
[83] T. Lindner, H. Lechert, Chelate ligands as mineralizing agents in hydrothermal synthe-
sis of faujasite-type zeolites: a kinetic study, Zeolites 16 (1996) 196 206.
[84] A.Y. Sheikh, A.G. Jones, P. Graham, Population balance modeling of particle forma-
tion during the chemical synthesis of zeolite crystals, assessment of hydrothermal
precipitation kinetics, Zeolites 16 (1996) 164
172.
[85] K. Onuma, A. Ito, T. Tateishi, T. Kameyama, Growth kinetics of hydroxyapa-
tite crystal revealed by atomic force microscopy, J. Cryst. Growth 154 (1995)
118 125.
[86] S. Komarneni, R. Roy, Q.H. Li, Microwave-hydrothermal synthesis of ceramic pow-
ders, Mater. Res. Bull. 27 (1992) 1393 1405.
[87] Y. Fang, D.K. Agarwal, D.M. Roy, R. Roy, Fabrication of porous hydroxyapatite cera-
mics by microwave processing, J. Mater. Res. 7 (1992) 490 494.
[88] S. Komarneni, Enhanced reaction kinetics under microwave-hydrothermal conditions,
in: N. Yamasaki K. Yanagisawa (Eds.) Proceedings of the Second International
Conference on Solvothermal Reactions, Takamatsu, Japan, December 18 20, 1996,
pp. 97 100.
[89] G.W. Morey, J.M. Hesselgesser, Thermochemistry of gaseous SiO(OH), SiO(OH) 2 ,
and SiO 2 , Am. J. Sci. 367 (1952).
[90] R.A. Laudies, Kinetics of hydrothermal quartz crystallization, J Am. Chem. Soc. 81
(1959) 562.
[91] R.A. Laudise, Physical Chemistry of Hydrothermal Growth of Crystals, in: F.A. Cotton
(Ed.), Progress in Inorganic Chemistry, 3, Wiley-Interscience, New York, NY, 1962.
[92] D.J. Marshall, R.A. Laudise, Crystal growth by hydrothermal technique, in: H.S. Peiser
(Ed.), Crystal Growth, Pergamon, New York, NY, 1966, p. 557.
Search WWH ::




Custom Search