Geoscience Reference
In-Depth Information
[110] N. Yamasaki, L. Xiang, Q. Feng, Formation of PbO powder by hydrothermal oxida-
tion of granular Pb metal, J. Mater. Sci. Lett. 15 (1996) 2153 2157.
[111] F. Habashi, A Textbook of Hydrometallurgy, Libraire Universitaire du Quebec,
Quebec, Canada, 1993.
[112] K.G. Thomas, Research, Engineering. Design, and Operation of a Pressure
Hydrometallurgy Facility for Gold Extraction, CANMET, Ottawa, Canada, 1994.
[113] F. Habashi, Industrial autoclaves for pressure hydrometallurgy, in: N. Yamasaki,
K. Yanagisawa (Eds.), Proceedings of the Second International Conference on
Solvothermal Reactions, Takamatsu, Japan, December 18 20, 1996, pp. 65 67.
[114] F. Habashi (Ed.), Handbook of Extractive Metallurgy, 4 vols., Wiley-VCH, Germany,
1997.
[115] K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid
technology—towards biodmedical applications, Adv. Drug Deliv. Rev. 60 (2008)
299 327.
[116] H. Uchida, M. Amiya, Y. Iwai, Y. Arai, Separation of dimethylnaphthalene isomers by
supercritical phase absorption using zeolite, in: N. Yamasaki, K. Yanagisawa (Eds.),
Proceedings of the Second International Conference on Solvothermal Reactions,
Takamatsu, Japan, December 18 20, 1996, pp. 127 130.
[117] T. Adschiri, K. Arai, Hydrothermal synthesis of metal oxide nanoparticles under super-
critical conditions, in: Y.-P. Sun (Ed.), Supercritical Fluid Technology in Materials
Science and Engineering, Marcel Dekker, New York, NY, 2002, pp. 311 325.
[118] T. Adschiri, K. Byrappa, Supercritical hydrothermal synthesis of organic inorganic
hybrid nanoparticles, in: A. Muramatsu, T. Miyashita (Eds.), Nanohybridization of
Organic Inorganic Materials, Springer, Heidelberg, Germany, 2009, pp. 247 280.
[119] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Prog. Cryst.
Growth Charact. Mater. 53 (2007) 117 166.
[120] R. Roy, Accelerating the kinetics of low-temperature inorganic syntheses, J. Solid
State Chem. 111 (1994) 11 17.
[121] J.H. Burns, M.A. Bredig, Transformation of calcite to aragonite by grinding, J. Chem.
Phys. 25 (1956) 1281.
[122] F. Dachille, R. Roy, High-pressure phase transformations in laboratory mechanical
mixers and mortars, Nature 186 (34) (1960) 71.
[123] V.V. Boldyrev, A historic view on the development of mechanochemistry in Siberia,
Chem. Sustain. Dev. 10 (2002) 3 10.
[124] V.V. Boldyrev, A. Kabibullin, N.V. Khkosova, E.G. Avaakumov, Hydrothermal reac-
tions under mechanochemical treatment, J. Mater. Synth. Process. 4 (1996) 377 381.
[125] K.S. Suslick, Sonochemistry, Science 247 (1990) 1439 1445.
[126] V. Srikanth, R. Roy, S. Komarneni, Acoustic-wave stimulation of the leaching of
layer silicates, Mater. Lett. 15 (1992) 127 129.
[127] Y. Fang, D.K. Agarwal, D.M. Roy, R. Roy, Fabrication of porous hydroxyapatite
ceramics by microwave ceramics, J. Mater. Res. 7 (1992) 490 494.
[128] A. Abu-Sharma, J.S. Morris, S.R. Koirtyohann, Wet ashing of some biological sam-
ples in microwave oven, Anal. Chem. 47 (1975) 1475 1477.
[129] H.M. Kingston, L.B. Jassie (Eds.), Introduction to Microwave Sample Preparation,
American Chemical Society, Washington, DC, 1988.
[130] S. Komarneni, R. Roy, Q.H. Li, Microwave-hydrothermal synthesis of ceramic pow-
ders, Mater. Res. Bull. 27 (1992) 1393 1405.
[131] S. Komarneni, R. Pidugu, Q.H. Li, R. Roy, Microwave-hydrothermal processing of
metal powders, J. Mater. Res. 10 (1995) 1687 1692.
Search WWH ::




Custom Search