Geoscience Reference
In-Depth Information
[91] R. Basca, P. Ravindranathan, J.P. Dougherty, Electrochemical, hydrothermal, and
electrochemical-hydrothermal synthesis of barium titanate thin films on titanium sub-
strates, J. Mater. Res. 7 (1992) 423 428.
[92] P. Bendale, S. Venigalla, J.R. Ambrose, E.D. Verink Jr., J.H. Adair, Preparation of
barium titanate films at 55 C by “An Electrochemcial Method,” J. Am. Ceram. Soc.
76 (1993) 2619
2627.
[93] A.J. Bard, L.R. Faulkner, Electrochemical Methods—Fundamentals and Applications,
John Wiley & Sons, New York, NY, 1980.
[94] K. Kajiyoshi, K. Tomono, Y. Hamaji, T. Kasanami, M. Yoshimura, Growth of stron-
tium titanate thin films of controlled thickness by the hydrothermal electrochemical
method, J. Am. Ceram. Soc. 77 (1994) 2889 2897.
[95] D.D. Macdonald, A.C Scott, P. Wentrcek, External reference electrodes for use in
high temperature aqueous systems, J. Electrochem. Soc. 126 (1979) 908 911.
[96] W. Weyl, Uber Metallammonium-Verbindungen, Ann. Physik. 121 (1864) 606 610.
[97] C.A. Seely, On ammonium and the solubility of metals without chemical action,
J. Franklin Inst. 61 (1871) 110.
[98] J.J. Callahan, Q.S. Chen, Hydrothermal and ammonothermal growth of ZnO and
GaN, in: G. Dhanraja, K. Byrappa, V. Prasad, M. Dudley (Eds.), Springer Handbook
of Crystal Growth, Springer, Heidelberg, Germany, 2010, pp. 655 689.
[99] H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry, in: E.
Kaldis (Ed.), Current Topics in Materials Science, vol. 8, North Holland Publishing
Co., Amsterdam, 1982, pp. 383 427.
[100] H. Wakayama, Y. Fukushima, N. Yamasaki, Wet oxidation of waste oil, in: R. Yamanoto
et al. (Eds.), Advanced Materials 1992, Trans. Mat. Res. Soc. Japan, 18A, 1994, pp.
775 778.
[101] V.N. Turlakov, G.M. Safronov, G.V. Kleshchev, A.V. Simonov, Experimental auto-
clave with transparent windows for studying hydrothermal solutions, Izvestia Akad.
Nauk. Inorg. Mater. 6 (1970) 1216 1217.
[102] V.A. Kuznestov, A.N. Lobachev, Hydrothermal method for the growth of crystals,
Sov. Phys. Crystallogr. 17 (1973) 775
804.
[103] N.Y. Ikornikova, A.N. Lobachev, A.R. Vasenin, V.M. Egorov, A.V. Antoshin,
Apparatus for precision research in hydrothermal experiments, in: A.N. Lobachev
(Ed.), Crystallizatioin Processes Under Hydrothermal Conditions, Consultants Bureau,
New York, NY, 1973, pp. 241 255.
[104] M. Buback, E.U. Franck, Measurements of the vapor pressures and critical data of
ammonium halides, Berichteder Bunsengesellschaft fur Physikalische Chemie 76
(1972) 350 354.
[105] M. Hosaka, S. Taki, Raman spectral studies of SiO 2 a NaOH a H 2 O system solution
under hydrothermal conditions, J. Cryst. Growth 100 (1990) 343 346.
[106] K. Yanagisawa, M. Sasaki, M. Nishioka, K. Ioku, N. Yamasaki, Preparation of
sintered compacts of anatase by hydrothermal hot-pressing, J. Mat. Sci. Lett. 13
(1994) 765 766.
[107] N. Yamasaki, K. Yanagisawa, M. Nishioka, S. Kanahara, Solidification of radioactive
waste by hydrothermal hot pressing method, J. Mat. Sci. Lett. 5 (1986) 355.
[108] M. Nishioka, K. Yanagisawa, N. Yamasaki, Solidification of sludge ash by hydrother-
mal hot pressing method, J. Water Pollut. Contr. Fed. 62 (1991) 926.
[109] Y. Nakane, T. Hashida, H. Takahashi, N. Yamasaki, Strengthening of hydrothermal
hot pressed concrete wastes by the addition of fresh cement, J. Ceram. Soc. Japan 103
(1995) 513 516.
Search WWH ::




Custom Search