Geoscience Reference
In-Depth Information
[34] O.F. Tuttle, A new hydrothermal quenching apparatus, Am. J. Sci. 246 (1948) 628 635.
[35] R. Roy, E.F. Osborn, Some simple aids in hydrothermal
investigation of mineral
system, Econ. Geol. 47 (1952) 717 721.
[36] W.C. Luth, O.F. Tuttle, Externally heated cold-seal pressure vessels for use to 10,000
bars and 750 C, Am. Min. 48 (1963) 1401 1403.
[37] J.S. Huebner, Buffering techniques for hydrostatic systems at elevated pressures,
in: G.C. Ulmer (Ed.), Research Techniques for High Pressure and High Temperature,
Springer-Verlag, New York, NY, 1971, pp. 123 177.
[38] A.D. Edgar, Experimental Petrology: Basic Principles and Techniques, Clarendon
Press, Oxford, 1973. p. 217
[39] A.C. Walker, Hydrothermal synthesis of quartz crystals, Ind. Eng. Chem. 36 (1953)
250 256.
[40] R.A. Laudise, The Growth of Single Crystals, Prentice-Hall, Englewood Cliffs, NJ,
1970, pp. 278 2 281
[41] J. Asahara, K. Nagai, S. Harada, Synthetic quartz crystals by large autoclaves, in:
S. Somiya (Ed.), Proceedings of the First International Symposium on
Hydrothermal Reactions, Gakujutsu Bunken Fukyu-Kai, Japan, March 22 2 26,
1982, pp. 430 2 441.
[42] S. Taki, Improvement of growth process and characterization of quartz crystals, Progr.
Cryst. Growth Char. 23 (1991) 313 339.
[43] R.A. Laudise, P.M. Bridenbaugh, T. Iradi, Pressure balance under hydrothermal condi-
tions, J. Cryst. Growth 140 (1994) 51 56.
[44] F.H. Smyth, L.H. Adams, The system calcium-oxide carbon dioxide, J. Am. Chem.
Soc. 45 (1923) 1172.
[45] R.W. Goranson, Solubility of water in granite magmas, Am. J. Sci. 22 (1931)
481 502.
[46] H.S. Yoder, High low quartz inversion up to 10,000 kg/cm 3 , Trans. Am. Geophys.
Union 31 (1950) 827 835.
[47] F.R. Boyd, J.L. England, The quartz coesite transition, Geophys. Research 65 (1960)
741 749.
[48] B. Vodar, J. Kieffer, Influence of pressure on the elastic modulus, the yield strength,
and the deformation of metals and alloys, in: A. Pugh (Ed.), Mechanical Behavior of
Materials Under Pressure, Elsevier, Barking, Essex, 1970, p. 1.
[49] H.T. Hall, Some high pressure, high temperature apparatus design considerations:
Equipment for use at 100,000 atm. and 300 o C, The effect of high pressure on the crys-
tal structure of LaOs2 and CeOs2, Rev. Sci. Instrum. 29 (1958) 267.
[50] W.A. Bassett, A.H. Shen, M. Bucknum, A new diamond anvil cell for hydrothermal
studies to 2.5 Gpa and from 2 190 to 1200 C, Rev. Sci.
Instrum. 64 (1993)
2340 2345.
[51] S. Mroczkowski, Development of high-pressure, high-temperature technique for grow-
ing single crystals from the flux, J. Cryst. Growth 24/25 (1974) 683 687.
[52] A.A. Shternberg, Controlling the growth of crystals in autoclaves, in: A.N. Lobachev
(Ed.), Crystallization Processes Under Hydrothermal Conditions, Consultant Bureau,
New York, NY, 1973, pp. 225 240.
[53] S.M. Clark, A. Nield, T. Rathbone, J. Flaherty, C.C. Tang, J.S.O. Evans, et al.,
Development of large volume reaction cells for kinetic studies using energy-dispersive
powder diffraction, Nucl. Inst. Methods Phys. Res. B97 (1995) 98 101.
[54] J.S.O. Evans, R.J. Francis, D. O'Hare, S.J. Price, S.M. Clark, J. Flaherty, et al., An
apparatus for the study of the kinetics and mechanism of hydrothermal reactions by
Search WWH ::




Custom Search