Geoscience Reference
In-Depth Information
in situ energy dispersive X-ray diffraction, Rev. Sci.
Instrum. 66 (1995)
2442 2445.
[55] S.M. Clark, E. Doorhyee, A quantitative kinetic study of the I 2 II phase transition of
ammonium chloride, J. Phys. Condens. Matter. 4 (1992) 8969 8974.
[56] E.D. Kolb, R.A. Laudise, Pressure volume temperature behavior
in the system
H 2 O
AlPO 4 and its relationship to the hydrothermal growth of AlPO 4 ,
J. Cryst. Growth 56 (1982) 83
a
H 3 PO 4 a
92.
[57] E.D. Kolb, R.L. Barns, R.A. Laudise, J.C. Grenier, Solubility, crystal growth and
perfection of aluminum orthophosphate, J Cryst. Growth 50 (1980) 404 418.
[58] N.Y. Ikornikova, A.N. Lobachev, A.R. Vasenin, V.M. Egrov, A.V. Autoshin,
Apparatus for precision research in hydrothermal, in: A.N. Lobachev (Ed.),
Crystallization Processes under Hydrothermal Conditions, Consultant Bureau,
New York, NY, 1973, p. 241.
[59] K. Yanagisawa, M. Xian-Pin, M. Nishioka, K. Loku, N. Yamasaki, Development of
solubility measurement method under hydrothermal conditions, J. Mater. Sci. Lett. 12
(1993) 1800 1802.
[60] J.M. Stanley, Hydrothermal synthesis of large aluminium phosphate, Cryst. Industr.
Eng. Chem. 46 (1954) 1684 1689.
[61] M. Poignant, L. Le, Y. Toudic, Etude de la Solubilite du Phosphate d'Alunimium
(AlPO 4 ) dans des Solutions Hydrothermales d'Acide Orthophosphorique (H 3 PO 4 ),
Mat. Res. Bull. 14 (1979) 603 612.
[62] D.R. Kinloch, R.F. Belt, R.C Puttbach, Hydrothermal growth of calcite in large auto-
claves, J. Cryst. Growth 24/25 (1974) 610 613.
[63] N. Yamasaki, M. Fujiki, M. Nishioka, K. Ioku, K. Yanagisawa, N. Kozai, S. Muraoka,
Hydrothermal decomposition of TBP and fixation of its decomposed residue by hydro-
thermal hot pressing technique, in: Proceedings of the Third International Symposium
of Advance Nuclear Energy Research—Global Environment and Nuclear Energy,
Japan Atomic Energy Research Institute, Tokyo, 1991, pp. 1 5.
[64] W.E. Seyfried Jr., D.R. Janecky, Heavy metal and sulfur transport during subcritical and
supercritical hydrothermal alteration of basalt: influence of fluid pressure and basalt
composition and crystallinity, Geochim. Cosmochim. Acta 49 (1985) 2545
2560.
[65] W.L. Bourcier, H.L. Barnes, Rocking autoclaves for hydrothermal experiments I.
Fixed-volume systems, in: G.C. Ulmer, H.L. Barnes (Eds.), Hydrothermal
Experimental Techniques, John Wiley & Sons, New York, NY, 1987, pp. 189 215.
[66] W.E. Seyfried Jr., D.R. Janecky, M.E. Berndt, Rocking autoclaves for hydrothermal
experiments II, the flexible reaction-cell system, in: G.C. Ulmer, H.L. Barnes (Eds.),
Hydrothermal Experimental Techniques, John Wiley & Sons, New York, NY, 1987,
pp. 216 239.
[67] K. Yanagisawa, Q. Feng, N. Yamasaki, Hydrothermal synthesis of xonotlite whiskers
by ion diffusion, J Mat. Sci. Lett. 16 (1997) 889 891.
[68] Parr Autoclaves Co., USA, Catalogue, 1999.
[69] Berghoff Autoclaves Ltd., Germany, Catalogue, 1999.
[70] Toshin Kogyo Co., Ltd., Japan, Catalogue, 1999.
[71] Nitto Koatsu Co., Japan, Catalogue, 1999.
[72] J.K. Fogo, C.S. Copeland, S.W. Benson, Pressure counterbalance apparatus for the
measurement of the electrical conductivity of aqueous solutions above their critical
temperatures, Rev. Sci. Instrum. 22 (1951) 765 769.
[73] J.K. Fogo, S.W. Benson, C.S. Copeland, The electrical conductivity of supercritical
solutions of sodium chloride and water, J. Chem. Phys. 22 (1954) 212 216.
Search WWH ::




Custom Search