Biomedical Engineering Reference
In-Depth Information
107. Kainmueller, D., Lamecker, H., Heller, M. O., Weber, B., Hege, H. C., & Zachow, S. (2013).
Omnidirectional displacements for deformable surfaces. Medical Image Analysis , 17 (4), 429-
441.
108. Neuenschwander, W., Fua, P., Székely, G., & Kübler, O. (1997). Velcro surfaces: Fast initial-
ization of deformable models. Computer Vision and Image Understanding , 65 (2), 237-245.
109. Fripp, J., Crozier, S., Warfield, S., & Ourselin, S. (2005) Automatic initialization of 3D
deformable models for cartilage segmentation. In Digital Image Computing Techniques and
Applications DICTA05 , 2005 (pp. 513-518). IEEE Computer Society.
110. Hough, P. V. C. (1962). Method and means for recognizing complex patterns. US Patent
US3069654 A.
111. Illingworth, J., & Kittler, J. (1988). A survey of the Hough transform. Computer Vision,
Graphics, and Image Processing , 44 , 87-116.
112. Khoshelham, K. (2007). Extending generalized Hough transform to detect 3D objects in laser
range data. ISPRS Workshop on Laser Scanning and SilviLaser 2007 , 12-14 September 2007,
Espoo, Finland, pp. 206-210.
113. van der Glas, M., Vos, F. M., Botha, C. P., & Vossepoel, A. M. (2002). Determination of
position and radius of ball joints. In Proceedings of SPIE 4684, Medical Imaging 2002:
Image Processing (vol. 157. pp. 1-7).
114. Seim, H., Kainmueller, D., Heller, M., Lamecker, H., Zachow, S., & Hege, H. C. (2008).
Automatic segmentation of the pelvic bones from CT data based on a statistical shape model.
In Eurographics Workshop on Visual Computing for Biomedicine (VCBM) , 2008, pp. 93-100.
115. Seim, H., Kainmueller, D., Lamecker, H., Bindernagel, M., Malinowski, J., & Zachow, S.
(2010). Model-based auto-segmentation of knee bones and cartilage in MRI data. In Pro-
ceedings of the 4th Medical Image Analysis for the Clinic—A Grand Challenge workshop
(MICCAI 2010) .
116. Ruppertshofen, H., Lorenz, C., Schmidt, S., Beyerlein, P., Salah, Z., Rose, G., et al. (2010).
Discriminative generalized Hough transform for localization of joints in the lower extremities.
Computer Science—Research and Development , 26 (1), 97-105.
117. Ruppertshofen, H., Künne, D., Lorenz, C., Schmidt, S., Beyerlein, P., Rose, G., &Schramm, H.
(2011). Multi-level approach for the discriminative generalized Hough transform. In CURAC
2011: 10. Jahrestagung der Deutschen Gesellschaft für Computer-und Roboterassistierte
Chirurgie , Magdeburg, Germany, 15-16 September 2011.
118. Klein, S., Staring, M., & Pluim, J. P. W. (2007). Evaluation of optimization methods for non-
rigid medical image registration using mutual information and B-splines. IEEE Transactions
on Image Processing , 16 (12), 2879-2890.
119. Fripp, J., Warfield, S. K., Crozier, S., & Ourselin, S. (2006). Automatic segmentation of
the knee bones using 3D active shape models. In 18th International Conference on Pattern
Recognition 2006 (ICPR 2006) , pp. 167-170.
120. Fripp, J., Bourgeat, P., Crozier, S., & Ourselin, S. (2007). Segmentation of the bones in MRIs
of the knee using phase, magnitude, and shape information. Academic Radiology , 14 (10),
1201-1208.
Search WWH ::




Custom Search