Biomedical Engineering Reference
In-Depth Information
87. Ababneh, S. Y., Prescott, J. W., & Gurcan, M. N. (2011). Automatic graph-cut based segmen-
tation of bones from knee magnetic resonance images for osteoarthritis research. Medical
Image Analysis , 15 (4), 438-448.
88. Zhou, J., Ye, M., & Zhang, X. (2010). Graph cut segmentation with automatic editing for
Industrial images. In 2010 International Conference on Intelligent Control and Information
Processing , Aug 2010 (pp. 633-637). IEEE.
89. Zhu-Jacquot, J. Z. J. J., &Zabih, R. (2007). Graph cuts segmentation with statistical shape pri-
ors for medical images. In 3rd International IEEE Conference on Signal Image Technologies
and Internet Based System 2007 (pp. 631-635). IEEE.
90. El-Zehiry, N., & Elmaghraby, A. (2008). Graph cut based deformable model with statistical
shape priors. In 19th International Conference on Pattern Recognition 2008 (pp. 1-4). IEEE.
91. Chen, X., Udupa, J. K., Bagci, U., Zhuge, Y., & Yao, J. (2012). Medical image segmentation
by combining graph cuts and oriented active appearance models. IEEE Transactions on Image
Processing , 21 (4), 2035-2046.
92. Vineet, V., & Narayanan, P. J. (2008). CUDA cuts: Fast graph cuts on the GPU. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2008
(CVPRW '08) , Jun 2008, pp. 1-8.
93. Delong, A., & Boykov, Y. (2008). A scalable graph-cut algorithm for N-D grids. In IEEE
Conference on Computer Vision and Pattern Recognition 2008 (CVPR 2008) , Jun 2008, pp.
1-8.
94. Lee, S., Shim, H., Park, S. H., Yun, I. D., & Lee, S. U. (2010). Learning local shape and
appearance for segmentation of knee cartilage in 3D MRI. In Proceedings of the 4th Medical
Image Analysis for the Clinic—A Grand Challenge workshop (MICCAI 2010) .
95. Cohen, L. D. L. (1991). On active contour models and balloons. CVGIP: Image understanding ,
53 (2), 211-218.
96. Shen, T., Huang, X., Li, H., Kim, E., Zhang, S., & Huang, J. (2011). A 3D Laplacian-driven
parametric deformable model. In IEEE International Conference on Computer Vision (ICCV)
2011 , pp. 279-286.
97. Behiels, G., Maes, F., Vandermeulen, D., & Suetens, P. (2002). Evaluation of image features
and search strategies for segmentation of bone structures in radiographs using Active Shape
Models. Medical Image Analysis , 6 (1), 47-62.
98. Cootes, T. F., & Taylor, C. J. (2001). Statistical models of appearance for computer vision .
World Wide Web Publication February.
99. Chung, F., & Delingette, H. (2009). Multimodal prior appearance models based on regional
clustering of intensity profiles. Medical Image Computing and Computer-Assisted Interven-
tion , 12 (Pt 2), 1051-1058.
100. Terzopoulos, D., Witkin, A., & Kass, M. (1987). Symmetry-seeking models and 3D object
reconstruction. International Journal of Computer Vision , 221 , 211-221.
101. Danielsson, P. (1980). Euclidean distance mapping. Computer Graphics and Image Process-
ing , 14 (3), 227-248.
102. Borgefors, G. (1984). Distance transformations in arbitrary dimensions. Computer Vision
Graphics and Image Processing , 27 (2), 321-345.
103. Sapiro, G. (1995). Geometric partial differential equations in image analysis: Past, present,
and future. In Proceedings of International Conference on Image Processing (vol. 3, pp. 1-4).
IEEE Computer Society Press.
104. Adalsteinsson, D., & Sethian, J. A. (1999). The fast construction of extension velocities in
level set methods. Journal of Computational Physics , 148 (1), 2-22.
105. Ng, H. P., Foong, K. W. C., Ong, S. H., Goh, P. S., & Nowinski, W. L. (2007). Medical
image segmentation using feature-based GVF snake. In Engineering in Medicine and Biology
Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE , Jan 2007 (vol.
2007, pp. 800-803).
106. Zhao, B., Cheng, S., & Zhang, X. (2011). A new adaptive deformable model using gradient
vector flow. Integration The Vlsi Journal , 134 , 472-482.
Search WWH ::




Custom Search