Biology Reference
In-Depth Information
Ribeck, N., & Saleh, O. A. (2008). Multiplexed single-molecule measurements with magnetic
tweezers. The Review of Scientific Instruments , 79 , 094301.
Rodriguez, O. C., Schaefer, A. W., Mandato, C. A., Forscher, P., Bement, W. M., &
Waterman-Storer, C. M. (2003). Conserved microtubule-actin interactions in cell move-
ment and morphogenesis. Nature Cell Biology , 5 (7), 599-609.
Sato, M., Schwartz, W. H., Selden, S. C., & Pollard, T. D. (1988). Mechanical properties of
brain tubulin and microtubules. The Journal of Cell Biology , 106 (4), 1205-1211.
Spero, R. C., Vicci, L., Cribb, J., Bober, D., Swaminathan, V., O'Brien, E. T., et al. (2008).
High throughput system for magnetic manipulation of cells, polymers, and biomaterials.
The Review of Scientific Instruments , 79 (8), 083707.
Squires, T. M., & Mason, T. G. (2010). Fluid mechanics of microrheology. Annual Review of
Fluid Mechanics , 42 , 413-438.
Taute, K. M., Pampaloni, F., & Florin, E.-L. (2010). Chapter 30—Extracting the mechanical
properties of microtubules from thermal fluctuation measurements on an attached tracer
particle. Methods in Cell Biology , 95 , 601-615.
Taute, K. M., Pampaloni, F., Frey, E., & Florin, E.-L. (2008). Microtubule dynamics depart
from the wormlike chain model. Physical Review Letters , 100 (2), 028102.
Tharmann, R., Claessens, M M A E, & Bausch, A. R. (2007). Viscoelasticity of isotropically
cross-linked actin networks. Physical Review Letters , 98 (8), 088103.
Uhde, J., Ter-Oganessian, N., Pink, D. A., Sackmann, E., & Boulbitch, A. (2005). Viscoelas-
ticity of entangled actin networks studied by long-pulse magnetic bead microrheometry.
Physical Review E , 72 (6), 10.
Valdman, D., Atzberger, P. J., Yu, D., Kuei, S., & Valentine, M. T. (2012). Spectral analysis
methods for the robust measurement of the flexural rigidity of biopolymers. Biophysical
Journal , 102 (5), 1144-1153.
Valentine, M. T., Guydosh, N. R., Gutierrez-Medina, B., Fehr, A. N., Andreasson, J. O., &
Block, S. M. (2008). Precision steering of an optical trap by electro-optic deflection. Op-
tics Letters , 33 (6), 599-601.
Waterman-Storer, C., Duey, D. Y., Weber, K. L., Keech, J., Cheney, R. E., Salmon, E. D., et al.
(2000). Microtubules remodel actomyosin networks in xenopus egg extracts via two mech-
anisms of F-actin transport. The Journal of Cell Biology , 150 (2), 361-376.
Yang, Y., Bai, M., Klug, W. S., Levine, A. J., & Valentine, M. T. (2013). Microrheology of
highly crosslinked microtubule networks is dominated by force-induced crosslinker un-
binding. Soft Matter , 9 (2), 383-393.
Yang, Y., Lin, J., Kaytanli, B., Saleh, O. A., & Valentine, M. T. (2012). Direct correlation
between creep compliance and deformation in entangled and sparsely crosslinked micro-
tubule networks. Soft Matter , 8 (6), 1776-1784.
Yang, Y., Lin, J., Meschewski, R., Watson, E., & Valentine, M. T. (2011). Portable magnetic
tweezers device enables visualization of the three-dimensional microscale deformation of
soft biological materials. BioTechniques , 51 (1), 29-34.
Yvon, A.-M. C., Gross, D. J., & Wadsworth, P. (2001). Antagonistic forces generated by my-
osin II and cytoplasmic dynein regulate microtubule turnover, movement, and organiza-
tion in interphase cells. Proceedings of the National Academy of Sciences of the United
States of America , 98 (15), 8656-8661.
Search WWH ::




Custom Search