Biology Reference
In-Depth Information
Janmey, P. A., Euteneuer, U., Traub, P., & Schliwa, M. (1991). Viscoelastic properties
of vimentin compared with other filamentous biopolymer networks. The Journal of Cell
Biology , 113 (1), 155-160.
Kalil, K., & Dent, E. W. (2005). Touch and go: Guidance cues signal to the growth cone
cytoskeleton. Current Opinion in Neurobiology , 15 (5), 521-526.
Kaverina, I., Krylyshkina, O., Beningo, K., Anderson, K., Wang, Y.-L., & Small, J. V. (2002).
Tensile stress stimulates microtubule outgrowth in living cells. Journal of Cell Science ,
115 (11), 2283-2291.
Kim, S., & Coulombe, P. A. (2010). Emerging role for the cytoskeleton as an organizer and
regulator of translation. Nature Reviews. Molecular Cell Biology , 11 (1), 75-81.
Kim, K., & Saleh, O. A. (2008). Stabilizing method for reflection interference contrast micros-
copy. Applied Optics , 47 (12), 2070-2075.
Kirmizis, D., & Logothetidis, S. (2010). Atomic force microscopy probing in the measurement
of cell mechanics. International Journal of Nanomedicine , 5 , 137-145.
Kollmannsberger, P., & Fabry, B. (2007). High-force magnetic tweezers with force feedback
for biological applications. The Review of Scientific Instruments , 78 (11), 114301.
Lee, H., Ferrer, J. M., Lang, M. J., & Kamm, R. D. (2010). Molecular origin of strain softening
in cross-linked F-actin networks. Physical Review E , 82 (1), 4.
Lin, Y.-C., Koenderink, G. H., MacKintosh, F. C., & Weitz, D. A. (2007). Viscoelastic prop-
erties of microtubule networks. Macromolecules , 40 , 7714-7720.
Lin, J., & Valentine, M. T. (2012a). High-force NdFeB-based magnetic tweezers device op-
timized for microrheology experiments. The Review of Scientific Instruments , 83 (5),
053905.
Lin, J., & Valentine, M. T. (2012b). Ring-shaped NdFeB-based magnetic tweezers enables
oscillatory microrheology measurements. Applied Physics Letters , 100 (20), 201902.
Liu, J., Koenderink, G. H., Kasza, K. E., MacKintosh, F. C., & Weitz, D. A. (2007). Visual-
izing the strain field in semiflexible polymer networks: Strain fluctuations and nonlinear
rheology of F-actin gels. Physical Review Letters , 98 (19), 198304.
Manosas, M., Meglio, A., Spiering, M. M., Ding, F., Benkovic, S. J., Barre, F. X., et al. (2010).
Magnetic tweezers for the study of DNA tracking motors. Methods in Enzymology , 475 ,
297-320.
Mason, T. G., & Weitz, D. A. (1995). Optical measurements of frequency-dependent linear
viscoelastic moduli of complex fluids. Physical Review Letters , 74 (7), 1250-1253.
Mickey, B., & Howard, J. (1995). Rigidity of microtubules is increased by stabilizing agents.
The Journal of Cell Biology , 130 (4), 909-917.
Miller, H. P., & Wilson, L. (2010). Preparation of microtubule protein and purified tubulin
from bovine brain by cycles of assembly and disassembly and phosphocellulose chroma-
tography. Methods in Cell Biology , 95 , 3-15.
Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time.
Nature Reviews. Molecular Cell Biology , 8 (5), 379-393.
O'Brien, T. E., Cribb, J., Marshburn, D., Taylor Ii, R. M., & Superfine, R. (2008). Chapter 16:
Magnetic manipulation for force measurements in cell biology. Methods in Cell Biology ,
89 , 433-450.
Pelletier, V., Gal, N., Fournier, P., & Kilfoil, M. L. (2009). Microrheology of microtubule
solutions and actin-microtubule composite networks. Physical Review Letters , 102 (18),
188303.
Preece, D., Warren, R., Evans, R. M. L., Gibson, G. M., Padgett, M. J., Cooper, J. M., et al.
(2011). Optical tweezers: Wideband microrheology. Journal of Optics , 13 (4), 044022.
Search WWH ::




Custom Search