Biomedical Engineering Reference
In-Depth Information
C
v v 2
h A
v w
vs
u i
v 2
vq 2
1
r
1
r
v
vr
1
r 2
a 2
r 2
2 Ar
y
~
¼ð
r3 sin q
Þ
þ
þ
vr 2 þ
ð
Þþ~
1
(2.97)
þv3 v
Aða 2
cos q
v
vq Aða 2
1
r
1
r
r 2
r 2
vr þ
Þ
sin q þ
Þ
v w
!
vp
vr
vr þ w
vy
vq
1
r
v
r
v
vq
1
r
3A 2
a 2
r 2
2 sin q ¼
ð
Þ
r
;
(2.98)
v ~
!
v ~
p
vq þ
vr þ ~
w
w
r
vy
vq
1
r
1
r
v v
vr
1
r
3A 2
a 2
r 2
2 cos q
ð
Þ
¼
;
(2.99)
where 3
a / R is the ratio between the pipe diameter and the radius of curvature, and all the higher
order of the tilde-marked terms as well as of 3 are neglected. Setting the small terms in (2.97) to zero
0
¼
¼
C
2 Av
2 Av
(2.100)
and rearranging for C :
C
¼
4 Av
:
(2.101)
Equation (2.97) then has the form:
v v 2
!
v 2
vp
vs
u
vr 2 þ
vu
vr þ
u
vq 2
1
r
1
r
1
r 2
2 Ar
y ¼
6 3vAr sin q þ
:
(2.102)
Separating variables according to r and q and substituting the separated variables:
~
u
¼ b
u
ð
r
Þ
sin q
; ~
y
¼ b
y
ð
r
Þ
sin q
; ~
w
¼ b
w
ð
r
Þ
cos q
; ~
p
¼
r
b
p
ð
r
Þ
sin q
(2.103)
in (2.96) , (2.98) , (2.99) , and (2.102) , normalizing the velocities by w
¼
C
4 v
Þ
and spatial variables
by a and applying the no-slip boundary condition at r
¼
0 result in the dimensionless velocity
components:
r 2 1
r 6
8
<
2 1
1152 r sin q 19
3 3
4 r sin q þ 3 Re
21 r 2
9 r 4
u
¼
þ
144 sin q 4
r 2 1
r 2 2
3 Re
:
(2.104)
y
¼
;
:
144 cos q 1
r 2 4
7 r 4 ;
3 Re
23 r 2
w
¼
þ
where Re
¼
wa
=
v is the Reynolds number. Using the Cartesian coordinates ( x
¼
r sin q , y
¼
r cos q ),
the three velocity components have the form:
8
<
h
y 2
r h 0 ð
d x
d t ¼
3 Re
144
ð
r
Þþ
r
Þ
;
d y
d t ¼
3 Re
144
xy
r h 0 ð
:
(2.105)
r
Þ
:
d s
d t ¼
r 2
2
ð
1
Þ
Search WWH ::




Custom Search