Biomedical Engineering Reference
In-Depth Information
FIGURE 2.16
Model of Dean flow in a toroidal pipe.
v v 2 y
v 2 y
vq 2
w 2
r
u 2 sin q
y vy
w
r
vu
vq
1
r
vu
vr þ
1
r
vy
vr þ
y
r 2 þ
1
r 2
2
r 2
vw
vq
vr þ
r sin q ¼
vr 2 þ
R
þ
sin q vy
1
cos q
r
vy
vq
w cos q
r
þ
vr þ
R
þ
r sin q
#
sin q
2 ð
y sin q
þ
w cos q
Þ
(2.93)
ð
R
þ
r sin q
Þ
" v 2 w
vr 2 þ
u 2 cos q
v 2 w
vq 2
y vw
w
r
vw
vq
yw
r
vu
vq þ v
vw
vr þ
w
r 2 þ
vy
vq
1
rr
1
r
1
r 2
2
r 2
vr þ
r sin q ¼
R
þ
1
r
sin q
vw
vr þ
cos q
vw
vq
y
r
þ
R
þ
r sin q
R
þ
r sin q
#
;
cos q
ðR þ r sin
2 ð
y sin q
þ
w cos q
Þ
(2.94)
where p is the pressure and v is the kinematic viscosity. Assuming that the radius of curvature is much
larger than the pipe diameter ( R
[
a ). The solution of the above four equations can be derived based
on the Poiseuille flow:
<
a 2
r 2
u
¼
A
ð
Þþ~
u
y
¼ ~
y
(2.95)
w
¼ ~
w
:
r ¼ Cs þ p
p
r ;
where A and C are the constants for velocity and pressure gradient, respectively. The tilde-marked
variables are the small perturbations. Rewriting the equations and ignoring the small products of the
tilde-marked variables lead to:
v
vr þ ~
y
~
y
r þ
v
w
vq ¼
~
1
r
0
;
(2.96)
Search WWH ::




Custom Search