Biomedical Engineering Reference
In-Depth Information
To mimic the real cellular environment, the concentration should be generated in a three-
dimensional matrix. The two-dimensional free-diffusion designs discussed above can be extended to
three-dimensional designs by using gel matrices between the source and the sink.
References
[1] A.E. Kamholz, B.H. Weigl, B.A. Finlayson, P. Yager, Quantitative analysis of molecular interaction in
microfluidic channel: The T-Sensor, Anal. Chem. 71 (1999) 5340-5347.
[2] R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, H.A. Stone, Experimental and theoretical
scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels, Appl. Phys.
Lett. 76 (2000) 2376-2378.
[3] A.E. Kamholz, P. Yager, Molecular diffusive scaling laws in pressure-driven microfluidic channels:
deviation from one-dimensional Einstein approximations, Sens. Actuators B Chem. 82 (2002)
117-121.
[4] P. Hinsmann, J. Frank, P. Svasek, M. Harasek, B. Lendl, Design, simulation and application of a new
micromixing device for time resolved infrared spectroscopy of chemical reactions in solutions, Lab Chip 1
(2001) 16-21.
[5] V. Hessel, S. Hardt, H. Loewe, F. Schoenfeld, Laminar mixing in different interdigital micromixers:
I. Experimental characterization, AIChE J. 49 (2003) 566-577.
[6] S. Hardt, F. Schoenfeld, Laminar mixing in different interdigital micromixers: II. Numerical simulations,
AIChE J. 49 (2003) 578-584.
[7] V. Haverkamp, W. Ehrfeld, K. Gebauer, V. Hessel, H. Loewe, T. Richter, C. Wille, The potential of
micromixers for contacting of disperse liquid phases, Fresenius. J. Anal. Chem. 364 (1999) 617-624.
[8] F.G. Bessoth, A.J. de Mello, A. Manz, Microstructure for efficient continuous flow mixing, Anal. Com-
mun. 36 (1999) 213-215.
[9] M. Kakuta, et al., Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation,
Anal. Chem. 75 (2003) 956-960.
[10] J.B. Knight, A.P. Vishwanath, J. Brody, R. Austin, Hydrodynamic focusing on a silicon chip: mixing
nanoliters in microseconds, Phys. Rev. Lett. 80 (1998) 3863-3866.
[11] Z. Wu, N.T. Nguyen, Rapid mixing using two-phase hydraulic focusing in microchannels, Biomed.
Microdevices 7 (2005) 13-20.
[12] K. Jensen, Chemical kinetics: smaller, faster chemistry, Nature 393 (1998) 735-736.
[13] G.M. Walker, M.S. Ozers, D.J. Beebe, Cell infection within a microfluidic device using virus gradients,
Sens. Actuators B Chem. 98 (2004) 347-355.
[14] M. Yi, H.H. Bau, The kinematics of bend-induced mixing in micro-conduits, Int. J. Heat Fluid Flow 24
(2003) 645-656.
[15] S.H. Wong, M.C.L. Ward, C.W. Wharton, Micro T-mixer as a rapid mixing micromixer, Sens. Actuators
B Chem. 100 (2004) 365-385.
[16] D.S.W. Lim, D.S.W. Lim, J.P. Shelby, J.S. Kuo, D.T. Chiu, Dynamic formation of ring-shaped patterns of
colloidal particles in microfluidic systems, Appl. Phys. Lett. 83 (2003) 1145-1147.
[17] S.H. Wong, P. Bryant, M. Ward, C. Wharton, Investigation of mixing in a cross-shaped micromixer
with static mixing elements for reaction kinetics studies, Sens. Actuators B Chem. 95 (2003)
414-424.
[18] D. Gobby, P. Angeli, A. Gavriilidis, Mixing characteristics of T-type microfluidic mixers, J. Micromech.
Microeng. 11 (2001) 126-132.
[19] A. Groisman, V. Steinberg, Efficient mixing at low Reynolds number using polymer additives, Nature 410
(2001) 905-908.
Search WWH ::




Custom Search