Biomedical Engineering Reference
In-Depth Information
[20] H.Y. Gan, Y.C. Lam, N.T. Nguyen, C. Yang, K.C. Tam, Efficient mixing of viscoelastic fluids in
a microchannel at low Reynolds number, Microfluid Nanofluidics 3 (2006) 101-108.
[21] F. Schoenfeld, V. Hessel, C. Hofmann, An optimised split-and-recombine micro-mixer with uniform
chaotic mixing, Lab Chip 4 (2004) 65-69.
[22] S. Wiggins and J.M. Ottino, Foundation of chaotic mixing, Phil. Trans. R. Soc. Lond. A, Vol. 362, pp. 937-970.
[23] J.M. Ottino, S. Wiggins, Introduction: mixing in microfluidics, Phil. Trans. R. Soc. Lond. A 362 (2004)
923-935.
[24] J. Branebjerg, P.K.P. Gravesen, J. Nielsen, C. Rye, Fast mixing by lamination, Proceedings of the IEEE
Micro Electro Mechanical Systems (MEMS) (1996) 441-446.
[25] N. Schwesinger, T. Frank, H. Wurmus, A modular microfluid system with an integrated micromixer,
J. Micromech. Microeng. 6 (1996) 99-102.
[26] B.L. Gray, D. Jaeggi, N.J. Mourlas, B.P. Van Drieenhuizen, K.R. Williams, N.I. Maluf, G.T.A. Kovacs,
Novel interconnection technologies for integrated microfluidic systems, Sens. Actuators A Phys. 77 (1999)
57-65.
[27] B. He, B.J. Burke, X. Zhang, R. Zhang, F.E. Regnier, A picoliter-volume mixer for microfluidic analytical
systems, Anal. Chem. 73 (2001) 1942-1947.
[28] C.K.L. Tan, M.C. Tracey, J.B. Davis, I.D. Johnston, Continuously variable mixing-ratio micromixer with
elastomer valves, J. Micromech. Microeng. 15 (2005) 1885-1893.
[29] N.T. Nguyen, X.Y. Huang, Mixing in microchannels based on hydrodynamic focusing and time-
interleaved segmentation: modelling and experiment, Lab Chip 5 (2005) 1320-1326.
[30] N.T. Nguyen, X.Y. Huang, Modeling, fabrication and characterization of a polymeric micromixer based on
sequential segmentation, Biomed. Microdevices J. 8 (2006) 133-139.
[31] N.L. Jeon, S.K.W. Dertinger, D.T. Chiu, I.S. Choi, A.D. Stroock, G.M. Whitesides, Generation of solution
and surface gradients using microfluidic systems, Langmuir 16 (2000) 8311-8316.
[32] S.K.W. Deringer, D.T. Chiu, N.L. Jeon, G.M. Whitesides, Generation of gradients having complex shapes
using microfluidic networks, Anal. Chem. 73 (2001) 1240-1246.
[33] K. Campbell, A. Groisman, Generation of complex concentration profiles in microchannels in a loga-
rithmically small number of steps, Lab Chip 7 (2007) 264-272.
[34] D. Amarie, J.A. Glazier, S.C. Jacobson, Compact microfluidic structures for generating spatial and
temporal gradients, Anal. Chem. 79 (2007) 9471-9477.
[35] D. Irimia, S.Y. Liu, W.G. Tharp, A. Samasani, M. Toner, M.C. Poznansky, Microfluidic system for
measuring neutrophil migratory responses to fast switches of chemical gradients, Lab Chip 6 (2006) 191-
198.
[36] W. Saadi, S.W. Rhee, F. Lin, B. Vahidi, B.G. Chung, N.L. Jeon, Generation of stable concentration
gradients in 2D and 3D environments using a microfluidic ladder chamber, Biomed. Microdevices 9 (2007)
627-635.
[37] J. Atencia, J. Morrow, L.E. Locascio, The microfluidic palette: a diffusive gradient generator with spatio-
temporal control 9 (2009) 2707-2714.
[38] J.P. Diao, L. Young, S. Kim, E.A. Fogarty, S.M. Heilman, P. Zhou, M.L. Shuler, M.M. Wu, M.P. DeLisa,
A three-channel microfluidic device for generating static linear gradients and its application to the
quantitative analysis of bacterial chemotaxis, Lab Chip 9 (2009) 1797-1800.
[39] H.K. Wu, B. Huang, R.N. Zare, Generation of complex, static solution gradients in microfluidic channels,
J. Am. Chem. Soc. 128 (2006) 4194-4195.
[40] T.M. Keenan, C.H. Hsu, A. Folch, Microfluidic "jets" for generating steady-state gradients of soluble
molecules on open surfaces, Appl. Phys. Lett. 89 (2006) 114103.
[41] B.G. Chung, F. Lin, N.L. Jeon, A microfluidic multi-injector for gradient generation, Lab Chip 6 (2006)
764-768.
Search WWH ::




Custom Search