Biomedical Engineering Reference
In-Depth Information
More advanced nanofluidics devices based on CNTs are used in various applica-
tions such as “water wires,” membranes, gas transport, filtration ( Noy et al. 2007 ), or
as biosensors ( Lee et al. 2009 ). The biosensors, which are of paramount importance
for bionanoelectronics, will be the subject of the next chapter. The technologies
for the fabrication of nanochannels and nanofluidic devices are the top-down and
bottom-up approaches described in this chapter ( Mijatovic et al. 2005 ).
References
Adair JH, Li T, Havey KK, Moon J, Mecholsky J, Morrone A, Talham DR, Ludwig MH, Wang L
(1998) Recent developments in the preparation and properties of nanometer-size spherical and
platelet-shaped particles and composite particles. Mater Sci Eng R 23:139-242
Appenzeller J, Radosavijevic M, Knoch J, Avouris Ph (2004) Tunneling versus thermionic
emission in one-dimensional semiconductors. Phys Rev Lett 92:048301
Bandaru PR, Pichanusakorn P (2010) An outline of synthesis and properties of silicon nanowires.
Semicond Sci Technol 25:024003
Biswas A, Wang T, Biris AS (2010) Single metal nanoparticles spectroscopy: optical characteriza-
tion of individual nanosystems for biomedical applications. Nanoscale 2:1560-1572
Bj ork MT, Ohlsson BJ, Thelander C, Persson AI, Deppert K, Wallenberg LR, Samuelson L (2002)
Nanowire resonant tunneling diode. Appl Phys Lett 81:4458-4460
Blake P, Noviselov KS, Castro Neto AH, Jiang D, Yang R, Booth TJ, Geim AK, Hill EW (2007)
Making graphene visible. Appl Phys Lett 91:063124
Bowler DR (2004) Atomic-scale nanowires: physical and electronic structure. J Phys: Condens
Mater 16:R721-R754
Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008)
Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351-355
Chen X, Guo Z, Yang G-M, Li J, Li M-Q, Liu J-H, Huang X-J (2010) Electrical nanogap devices
for biosensing. Mater Today 13:28-41
Chik H, Xu JM (2004) Nanometric superlattices: non-lithographic fabrication, materials, and
properties. Mater Sci Eng R43:103-138
Cuniberti G, Craco L, Porath D, Dekker C (2002) Backbone-induced semiconducting behaviour in
short DNA wires. Phys Rev B65:241314
Datta
S
(1997)
Electronic
transport
in
mesoscopic
systems.
Cambridge
University
Press,
Cambridge
del Alamo JA, Eugster CC, Hu Q, Melloch MR, Rooks MJ (1998) Electron waveguide devices.
Superlattice Microstruct 23:121-137
Di Ventra M, Zwolak M (2004) DNA electronics. In: Encyclopedia of nanoscience and nanotech-
nology. Nalwa HS (ed), American Scientific Publishers, California 1-19
Dragoman D, Dragoman M (1999) Advanced optoelectronic devices. Springer, Berlin
Dragoman D, Dragoman M (2001) Micro/nano-optoeletromechanical systems. Prog Quantum
Electron 25:229-290
Dragoman D, Dragoman M (2004) Quantum-classical analogies. Springer, Berlin
Dragoman M, Dragoman D (2009a) Nanoelectronics. Principles and devices. Artech House,
London
Dragoman M, Dragoman D (2009b) Graphene-based quantum electronics. Progr Quantum Elec-
tronics 33:165-214
Dragoman D, Dragoman M (2009c) The real-time detection of deoxyribonucleic acid bases via
their negative differential conductance signature. Phys. Rev E 80:022901
Enders RG, Cox DL, Singh RRP (2004) The quest for high conductance DNA. Rev Mod Phys
76:195-214
Search WWH ::




Custom Search