Biomedical Engineering Reference
In-Depth Information
of nanofabrication. It especially offers better alternative to construct
the soft matter nanostructures in a controllable manner. Various
organic and inorganic materials with nanoscale architectures can
be fabricated by electrochemical nanofabrication. It is a versatile
method for fabricating nanostructures with its simplicity, low-
temperature processing, cost-effectiveness, and precise control of
the deposit thickness through control of the total charge passed,
which are the essential advantages than other nanofabrication
techniques till date. It is an exciting era to witness the emerging
of nanotechnology. Electrochemistry will definitely contribute to
its development independently and interdisciplinarily with other
nanofabrication methods.
References
1.  Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J., and Deligianni,
H. (1998).
IBM J. Rev. Dev.
,
42
, pp 567.
2.  Andricacos, P. C. (1999).
Interface
,
8
, pp 32.
3.  Datta, M. (2003).
Electrochim. Acta
,
48
, pp 2975.
4.  Sun, J. J., Kondo, K., Okamura, T., Oh, S., Tomisaka, M., Yonemura, H.,
Hoshino, M., and Takahashi, K. (2003).
J. Electrochem. Soc
.,
150
, pp
G355.
5.  Herrero, E., Buller, L. J., and Abruna, H. D. (2001).
Chem. Rev.
,
101
,
pp 1897.
6.  Gewirth, A. A. and Niece, B. K. (1997).
Chem. Rev.
,
97
, pp 1129.
7.  Kolb, D. M., in Gerisher, H., and Tobias, C. W. (Eds.), 1978.
Advances
in Electrochemistry and Electrochemical Engineering
, Vol. 11, Wiley
Interscience, New York.
8.  Herrero, E., Buller, L. J., and Abruna, H. D. (2001).
Chem. Rev.
,
101
,
pp 1897.
9.  Bedair, S. 1993.
Atomic Layer Epitaxy
, Elsevier, Amsterdam.
10. Huang, B. M., Lister, T. E., and Stickney, J. L. (1997).
Surf. Sci.
,
392
, pp
27.
11. Suggs, D. W., and Stickney, J. L. (1993).
Surf. Sci.
,
290
, pp 362.
 
Search WWH ::




Custom Search