Digital Signal Processing Reference
In-Depth Information
where P X ( k ; t ) is the Poisson formula given in ( 6.71 ).
Similarly, the amplitudes of random variables X 1 and X 2 will have opposite
signs, if there are an odd number of zero crossings in the interval t :
PfX 2 ¼ UjX 1 ¼U ; tg¼PfX 2 ¼UjX 1 ¼ U ; tg
¼ 1
1
(6.76)
P X ðk ; tÞ:
;
3
;
5
; ...
Finally, from ( 6.72 )to( 6.76 ), we get:
k
k
1
1
l j t ðÞ
l j t ðÞ
e ljtj U 2
e ljtj
R XX ðtÞ¼U 2
k !
k !
0 ; 2 ; 4 ; ...
1 ; 3 ; 5 ; ...
"
#
:
(6.77)
k
k
¼ U 2 e ljtj 1
0
1
l j t ðÞ
ljtðÞ
¼ U 2 e 2 ljtj
k !
k !
;
2
;
4
; ...
1
;
3
;
5
; ...
Note that in the obtained result we have an absolute value of t because the time
interval t in the Poisson formula ( 6.71 ) is always positive, while in an autocorrelation
function time interval t takes all values from 1 until + 1 .
The autocorrelation function is shown in Fig. 6.10 for U ¼ 1 and l ¼ 0.5.
Next we verify the properties of the autocorrelation function for U ¼ 1:
P.1 The autocorrelation function has its maximum value at t ¼ 0, and it is equal to
U 2
¼ 1.
P.2 From ( 6.77 ), it is clear that the autocorrelation function is an even function,
i.e., R XX ( t ) ¼ R XX ( t ).
1
0.8
0.6
0.4
0.2
0
- 3
- 2
- 1
0
1
2
3
lt
Fig. 6.10 Autocorrelation function in Example 6.5.2
Search WWH ::




Custom Search