Digital Signal Processing Reference
In-Depth Information
As a consequence most of the values of the random variable are concentrated
around the mean value np , which is a well-known property of normal random
variables. Therefore, in this case, the probabilities ( 5.109 ) can be approximated
with a normal variable with the parameters:
m ¼ np
s 2
(5.131)
¼ npq:
It follows:
2
e ð k np Þ
f X ðxÞ ¼ X
0
C n p k q nk dðxkÞ X
n
n
1
2 pnpq
p
2 npq
dðxkÞ:
(5.132)
0
Note that the normal density in ( 5.132 ) approximates the probability mass
function ( 5.109 )
In this way, we can use the functions shown in Sect. 4.2.2 to find the approximate
probabilities for a binomial random variable:
Pfkk 1 ; ng ¼ X
k 1
1
2
1 þ erf k 1 m
C n p k q nk
s 2
p
:
(5.133)
0
Similarly,
Pfk 2 kk 3 ; ng ¼ X
k 3
1
2
erf k 3 m
s 2 p erf k 2 m
C n p k q nk
s 2
p
:
(5.134)
k¼k 2
Example 5.6.3 In n ¼ 60 independent trials, a binary event A occurs with a
probability of p ¼ 0.3. Find the probability that event A occurs greater than or
equal to 20 and less than or equal to 40 times.
Solution The number of occurrences of event A is a binomial variable with a mean
value and variance of:
m ¼ np ¼ 60 0
:
3 ¼ 18
:
(5.135)
s 2
¼ npq ¼ 60 0
:
3 ð 1 0
:
3 Þ ¼ 12
:
6
:
(5.136)
The corresponding normal density approximation is given as:
f X ðxÞ X
0
n
e ðk 18 Þ 2
1
2 p 12
p
6 dðxkÞ:
(5.137)
2 12
:
:
6
From ( 5.134 ), we get:
Pf 20 k 40
;
60 g
"
#
1
2
40 18
2 12
20 18
2 12
p
p
erf
erf
¼ 0
:
7134
:
(5.138)
:
6
:
6
 
Search WWH ::




Custom Search