Digital Signal Processing Reference
In-Depth Information
The normal variable Y has the following PDF:
2
e ð y m Y Þ
1
2 p
2 s Y
f Y ðyÞ¼
p
:
(5.6)
s Y
Placing ( 5.6 ) and ( 5.5 ) into ( 5.4 ), we obtain the density function of the lognormal
variable:
2
e ð ln x m Y Þ
2 s Y
p
2 p
1
for
x 0
;
f X ðxÞ¼
(5.7)
s Y x
f X ðxÞ¼ 0
for
x <
0
Note that m Y and s Y respectively, are the mean value and variance of the normal
random variable Y , and not of the lognormal variable X . Figure 5.1 shows the
lognormal variables (a) and densities (b), for different values of s Y and for
m Y ¼ 0.01. For small values of s Y ,( s Y 0.3), the lognormal PDF becomes more
symmetric, while for s Y >
0.3, the PDF becomes asymmetric.
5.1.2 Distribution Function
Using the definitions ( 2.61 ) and ( 5.7 ), the distribution function of a lognormal
variable is:
2
e ð ln x m Y Þ
ð
x
ð
x
1
2 ps Y
2 s Y
F X ðxÞ¼PfX xg¼
f X ðxÞdx ¼
p
d x:
(5.8)
x
1
1
However, we can express the distribution ( 5.8 ) in terms of the normal distribu-
tion and thus make possible the use of erf function to more easily derive the
lognormal distribution, as shown in the following equation:
2
e ð y m Y Þ
ð
ð
ln x
ln x
1
2 ps Y
2 s Y
F X ðxÞ¼PfX xg¼
f Y ðyÞdy ¼
p
d y:
(5.9)
1
1
Using the expressions for erf function ( 4.29 ) we arrive at:
8
<
ln x m Y
1
2
1 þ erf
p s Y
x 0
;
for
F X ðxÞ¼
(5.10)
:
0
otherwise
:
As an example, Fig. 5.2 shows the distribution function for m Y ¼ 0.01 and
s Y ¼ 1.
Search WWH ::




Custom Search