Digital Signal Processing Reference
In-Depth Information
The joint density of variables Y 1 and Y 2 is found to be:
f X 1 X 2 ð y 1 ; y 2 Þ
jJðy 1 ; y 2 Þj
f Y 1 Y 2 ðy 1 ; y 2 Þ ¼
:
(4.263)
The Jacobian is calculated by taking derivatives of y 1 and y 2 with respect to
x 1 and x 2 :
2 p
p
cos ð 2 px 2 Þ
@ y 1
@x 1
@ y 1
@x 2
p
2ln ðx 1 Þ
2ln ðx 1 Þ
sin ð 2 px 2 Þ
x 1
2 p
x 1 :
J ¼
¼
¼
2 p
p
@ y 2
@x 1
@ y 2
@x 2
sin ð 2 px 2 Þ
p
2ln ðx 1 Þ
2ln ðx 1 Þ
cos ð 2 px 2 Þ
x 1
(4.264)
Since x 1 is always positive (see ( 4.259 )), then
2 p
x 1 :
jJj ¼
(4.265)
From ( 4.261 ) and ( 4.262 ), we find:
y 1 þ y 2
2
x 1 ¼ e
:
(4.266)
Placing ( 4.266 ) into ( 4.264 ) from ( 4.263 ), we arrive at:
e y 1 þ y 2
e y 1
e y 2
1
2 p
1
1
2 p
2
2
2 ¼ f Y 1 ðy 1 Þf Y 2 ðy 2 Þ:
f Y 1 Y 2 ðy 1 ; y 2 Þ ¼
¼
p
2 p
p
(4.267)
Therefore, the transformation of two independent uniform random
variables produces two independent standard normal variables (with a
mean of zero and a variance of 1).
A.4.10. It is useful because of the fact that the sum X may have a PDF that is
closely approximated to a normal PDF for finite number N [PEE93,
p. 119].
A.4.11. In this case, the practical usefulness comes from the fact that the areas of
delta functions approximate Gaussian PDF curve. For more details see
[PAP65, pp. 268-272]. Also see Chap. 5 .
 
Search WWH ::




Custom Search