Digital Signal Processing Reference
In-Depth Information
From ( 2.138 ) , we have:
x ¼
2
2
e ð x m X Þ
y b
a
m X
x ¼ ð y b Þ
a
1
2 p
2 s X
p
e
f X ð x Þ
d y
d x
1
2 p
s X
2 s X
p
f Y ðyÞ¼
¼
¼
jj
jjs X
yb
a
2
e ð y ð b þ am X ÞÞ
1
2 p
2 a 2 s X
p
¼
:
jjs X
(4.71)
Comparing the result ( 4.71 ) with the expression for the normal PDF, we can
write:
2
e ð y m Y Þ
1
2 p
2 s Y
f Y ðyÞ¼
p
; 1<y<1;
(4.72)
s Y
where
m Y ¼ am X þ b;
s Y ¼ðas X Þ
2
¼ a 2 s X :
(4.73)
Observing ( 4.70 ), we can easily conclude that the parameters ( 4.73 ) can be
obtained from ( 4.70 ), using ( 2.244 ) and ( 2.355 ):
m Y ¼ EfYg¼EfaX þ bg¼aEfXgþb ¼ am X þ b;
s aXþb ¼ a 2 s X :
(4.74)
The following rule stands:
The linear transformation of the normal random variable results in a normal
variable with the mean value and variance given in ( 4.73 ).
Example 4.3.1 Find the PDF of the random variable Y ¼ 3 X + 2, where X is the
normal random variable with a mean value and variance equal to 1 and 4,
respectively.
Solution The transformed random variable Y is also a normal random variable
with the parameters obtained from ( 4.73 ):
m Y ¼ 3 m X þ 2 ¼ 3 ð 1 Þþ 2 ¼ 5
;
s 2
2
s 2
3 2 ¼ð 3 Þ
X ¼ 9 4 ¼ 36
:
(4.75)
From here, the PDF of the random variable Y is as follows:
2
2 p 6 e ð y 5 Þ
1
72
f Y ðyÞ¼
for
1<y<1:
(4.76)
Search WWH ::




Custom Search