Digital Signal Processing Reference
In-Depth Information
Using the expression for the mean value of the function of two random variables
( 3.87 ), we arrive at:
1
1
k
n
m nk ¼
ðx 1 X 1 Þ
ðx 2 X 2 Þ
f X 1 X 2 ðx 1 ; x 2 Þ d x 1 d x 2 :
(3.119)
1
1
This expression can be generalized for N random variables X 1 ,
, X N :
...
1
1
n N f X 1 ; ... ;X N ðx 1 ; ... ; x N Þ d x 1 ; ... ;
n 1
m n 1 ; ... ;n N ¼
ðx 1 X 1 Þ
; ... ; ðx N X N Þ
d x N :
...
1
1
(3.120)
The second central moment m 11 , called covariance is especially important:
C X 1 X 2 ¼ m 11 ¼ E ðX 1 X 1 ÞðX 2 X 2 Þ
1
1
¼
ðx 1 X 1 Þðx 2 X 2 Þf X 1 X 2 ðx 1 ; x 2 Þ d x 1 d x 2 :
(3.121)
1
1
Let us first relate the covariance to the independent variables , where the joint
PDF is equal to the product of the marginal PDFs, resulting in the following
covariance:
1
1
C X 1 X 2 ¼ m 11 ¼
ðx 1 X 1 Þðx 2 X 2 Þf X 1 ðx 1 Þf X 2 ðx 2 Þ d x 1 d x 2
1
1
2
4
3
5
2
4
3
5
1
1
1
1
¼
x 1 f X 1 ðx 1 Þ d x 1 X 1
f X 1 ðx 1 Þ d x 1
x 2 f X 2 ðx 2 Þ d x 2 X 2
f X 2 ðx 2 Þ d x 2
1
1
1
1
X 2 X 2
¼ 0 :
¼
X 1 X 1
(3.122)
From ( 3.122 ) it follows that the covariance is equal to zero for the independent
variables.
Using ( 3.95 ), ( 3.121 ) can be simplified as:
C X 1 X 2 ¼ X 1 X 2 X 1 X 2 :
(3.123)
Let us now relate covariance with the correlated and orthogonal random
variables.
From ( 3.123 ) and ( 3.111 ), it follows that the covariance is equal to zero if the
random variables are uncorrelated.
Search WWH ::




Custom Search