Information Technology Reference
In-Depth Information
In this notation,
O
i
o
V y (0)
1
h y ( y
,
M o )
=
y o ) 2 +
( y
( y
y o ) 4
O
(10
.
41)
2 i
o
V z (0)
1
h z ( y
,
M o )
=
y o ) 3 +
.
( y
( y
y o ) 5
Now return to (10.35) and determine the anomalous magnetic field at the great
distances from the inhomogeneity. Let
|
y
y o | >>
d . Then,
o V y (0)
S
( y y S ) 2
S
i
j x ( M o )
( y y o ) 2
i
o
V y (0)
i
o
V y (0)
( y y S ) 2
H o y ( y )
=
dS
=
j x ( M o ) dS
=
J x
o V z (0)
S
y S ) 3
S
2 i
j x ( M o )
( y
2 i
o
V z (0)
2 i
o
V z (0)
H A
o z ( y ) =
dS =
j x ( M o ) dS =
J x ,
y o ) 3
( y
( y
y S ) 3
(10
.
42)
where
J x =
j x ( M o ) dS
S
is the total excess current in the inhomogeneity and y S is the coordinate of the central
point of its cross-section S . Thus, with regard for (10.40), we have
H A
o z ( y )
2
V z (0)
V y (0) =−
2
V z (0)
dV z ( z )
dz
z = 0
o y ( y ) =
(10
.
43)
H A
( y
y S )
( y
y S )
H A
H A
0 y can be expressed through the normal
impedance of the Earth. Let us introduce the function
It is easy to show that the ratio
0 z /
V z ( z )
dV z ( z )
dz
Z ( z )
=
i
o
.
(10
.
44)
It is seen from (10.40) that Z ( z ) satisfies the Riccati equation
dZ ( z )
dz
N ( z ) Z 2 ( z )
=
i
o
(10
.
45)
with the boundary condition
i
o
D
Z ( D )
=
.
 
Search WWH ::




Custom Search