Information Technology Reference
In-Depth Information
d 2 U (
λ,
z
,
z o )
2 (
λ,
z ) U (
λ,
z
,
z o )
=−
( z
z o )
z
,
z o
[0
,
D]
dz 2
(10
.
37)
(
λ,
z )
=
λ
2
i
o N ( z )
e
>
0
with conditions
dU (
λ,
z
,
z o )
+ λ
U (
λ,
z
,
z o )
=
0
z
=
0
dz
dU (
λ,
z
,
z o )
D (
λ
) U (
λ,
z
,
z o )
=
0
z
=
D
dz
D (
λ
)
=
λ
2
i
o
Re
>
0
.
D
D
Let us turn to (10.36) and find the asymptotics of the functions h y ( y
,
M o )
and h z ( y
,
M o )at
|
y
y o | →∞
.Givenlarge
|
y
y o |
, harmonics of low spatial
frequencies
λ
make the major contribution to h y ( y
,
M o ), h z ( y
,
M o ). Expanding
U (
λ,
z
=
0
,
z o )inpowersofsmall
λ
, we get
λ = 0 + ...,
dU (
λ,
z
=
0
,
z o )
U (
λ,
z
=
0
,
z o )
=
U (
λ =
0
,
z
=
0
,
z o )
+ λ
d
λ
whence, upon the substitution into (10.36) and integration, we obtain
O
i
o
U (
λ =
0
,
z
=
0
,
z o )
1
h y ( y
,
M o )
=
+
( y
y o ) 2
( y
y o ) 4
λ = 0 +
O
(10
.
38)
2 i
o
1
dU (
λ,
z
=
0
,
z o )
1
h z ( y
,
M o )
=
.
( y
y o ) 3
d
λ
( y
y o ) 5
H A
H A
In order to write the relations between
0 y and
0 z in the form containing the
MT impedance, we introduce the functions
λ = 0 .
dU (
λ,
z
,
z o )
V y ( z )
=
U (
λ =
0
,
z
,
z o )
,
V z ( z )
=
(10
.
39)
d
λ
0. The problem for
the function V z ( z ) is solved by differentiating (10.37) with respect to
The function V y ( z ) is the solution of problem (10.37) at
λ =
λ
and setting
λ =
0. Then,
d 2 V z ( z )
dz 2
+
i
o
( z ) V z ( z )
=
0
z
[0
,
D]
z =+ 0 =−
dV z ( z )
dz
V y (0)
.
(10
40)
z = D
dV z ( z )
dz
i
o D V z (D)
=
0
.
 
Search WWH ::




Custom Search