Biology Reference
In-Depth Information
Dumont, J.N., 1972. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development
in laboratory maintained animals. J. Morphol. 136, 153-179.
Elinson, R.P., del Pino, E.M., 2011. Developmental diversity of amphibians. WIREs Dev.
Biol. 1, 345-369.
Elinson, R.P., Ninomiya, H., 2003. Parallel microtubules and other conserved elements of
dorsal axial specification in the direct developing frog, Eleutherodactylus coqui. Dev.
Genes Evol. 213, 28-34.
Elinson, R.P., Rowning, B., 1988. A transient array of parallel microtubules in frog eggs:
potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol.
128, 185-197.
Elinson, R.P., Sabo, M.C., Fisher, C., Yamaguchi, T., Orii, H., Nath, K., 2011. Germ plasm
in Eleutherodactylus coqui, a direct developing frog with large eggs. Evodevo 2, 20.
Faure, S., Lee, M.A., Keller, T., ten Dijke, P., Whitman, M., 2000. Endogenous patterns of
TGFbeta superfamily signaling during early Xenopus development. Development 127,
2917-2931.
Forristall, C., Pondel, M., Chen, L., King, M., 1995. Patterns of localization and cytoskeletal
association of two vegetally localized RNAs, Vg1 and Xcat-2. Development 121,
201-208.
Fox, M., Urano, J., Reijo Pera, R.A., 2005. Identification and characterization of RNA
sequences to which human PUMILIO-2 (PUM2) and deleted in Azoospermia-like
(DAZL) bind. Genomics 85, 92-105.
Frederick, R.L., Shaw, J.M., 2007. Moving mitochondria: establishing distribution of an
essential organelle. Traffic 8, 1668-1675.
Gard, D.L., 1991. Organization, nucleation, and acetylation of microtubules in Xenopus
laevis oocytes: a study by confocal immunofluorescence microscopy. Dev. Biol. 143,
346-362.
Gard, D.L., 1992. Microtubule organization during maturation of Xenopus oocytes: assem-
bly and rotation of the meiotic spindles. Dev. Biol. 151, 516-530.
Gard, D.L., 1994. Gamma-tubulin is asymmetrically distributed in the cortex of Xenopus
oocytes. Dev. Biol. 161, 131-140.
Gard, D.L., 1999. Confocal microscopy and 3-D reconstruction of the cytoskeleton of
Xenopus oocytes. Microsc. Res. Tech. 44, 388-414.
Gard, D.L., Affleck, D., Error, B.M., 1995. Microtubule organization, acetylation, and
nucleation in Xenopus laevis oocytes: II. A developmental transition in microtubule
organization during early diplotene. Dev. Biol. 168, 189-201.
Gard, D.L., Cha, B.J., King, E., 1997. The organization and animal-vegetal asymmetry of
cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and micro-
tubules. Dev. Biol. 184, 95-114.
Gautreau, D., Cote, C.A., Mowry, K.L., 1997. Two copies of a subelement from the Vg1
RNA localization sequence are sufficient to direct vegetal
localization in Xenopus
oocytes. Development 124, 5013-5020.
Godsave, S.F., Wylie, C.C., Lane, E.B., Anderton, B.H., 1984. Intermediate filaments in the
Xenopus oocyte: the appearance and distribution of cytokeratin-containing filaments.
J. Embryol. Exp. Morphol. 83, 157-167.
G ยจ nczy, P., 2008. Mechanisms of asymmetric cell division: flies and worms pave the way.
Nat. Rev. Mol. Cell Biol. 9, 355-366.
Greenbaum, M.P., Iwamori, N., Agno, J.E., Matzuk, M.M., 2009. Mouse TEX14 is
required for embryonic germ cell intercellular bridges but not female fertility. Biol.
Reprod. 80, 449-457.
Gupta, T., Marlow, F.L., Ferriola, D., Mackiewicz, K., Dapprich, J., Monos, D.,
Mullins, M.C., 2010. Microtubule actin crosslinking factor 1 regulates the Balbiani body
and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet. 6, e1001073.
 
Search WWH ::




Custom Search