Biology Reference
In-Depth Information
Guraya, S.S., 1979. Recent advances in the morphology, cytochemistry, and function of Bal-
biani's vitelline body in animal oocytes. Int. Rev. Cytol. 59, 249-321.
Hachet, O., Ephrussi, A., 2004. Splicing of oskar RNA in the nucleus is coupled to its cyto-
plasmic localization. Nature 428, 959-963.
Hartenstein, V., 1989. Early neurogenesis in Xenopus: the spatio-temporal pattern of pro-
liferation and cell lineages in the embryonic spinal cord. Neuron 3, 399-411.
Hashimoto, Y., Maegawa, S., Nagai, T., Yamaha, E., Suzuki, H., Yasuda, K., Inoue, K.,
2004. Localized maternal factors are required for zebrafish germ cell formation. Dev.
Biol. 268, 152-161.
Hausen, P., Riebesell, M., 1991. The Early Development of Xenopus laevis: An Atlas of the
Histology. Springer, Berlin.
Heasman, J., Quarmby, J., Wylie, C.C., 1984. The mitochondrial cloud of Xenopus oocytes:
the source of germinal granule material. Dev. Biol. 105, 458-469.
Heasman, J., Wessely, O., Langland, R., Craig, E.J., Kessler, D.S., 2001. Vegetal local-
ization of maternal mRNAs is disrupted by VegT depletion. Dev. Biol. 240,
377-386.
Heidemann, S., Sander, G., Kirschner, M.W., 1977. Evidence for a functional role of RNA
in centrioles. Cell 10, 337-350.
Heinrich, B., Deshler, J.O., 2009. RNA localization to the Balbiani body in Xenopus
oocytes is regulated by the energy state of the cell and is facilitated by kinesin II.
RNA 15, 524-536.
Ho, R.K., 1992a. Cell movements and cell fate during zebrafish gastrulation. Dev. Suppl.,
65-73.
Ho, R.K., 1992b. Axis formation in the embryo of the zebrafish, Brachydanio rerio. Semin.
Dev. Biol. 3, 53-64.
Holtfreter, J., 1938a. Differenzierungspotenzen isolierter Teile der Anurengastrula. Dev.
Genes Evol. 138, 657-738.
Holtfreter, J., 1938b. Differenzierungspotenzen isolierter Teile der Urodelengastrula. Dev.
Genes Evol. 138, 522-656.
Holtfreter, J., 1943. Properties and functions of the surface coat in amphibian embryos.
J. Exp. Zool. 93, 251-323.
Horvay, K., Claussen, M., Katzer, M., Landgrebe, J., Pieler, T., 2006. Xenopus Dead end
mRNA is a localized maternal determinant that serves a conserved function in germ cell
development. Dev. Biol. 291, 1-11.
Houston, D.W., 2012. Cortical rotation and messenger RNA localization in Xenopus axis
formation. WIREs Dev. Biol. 1, 371-388.
Houston, D.W., King, M.L., 2000a. A critical role for Xdazl, a germ plasm-localized
RNA, in the differentiation of primordial germ cells in Xenopus. Development 127,
447-456.
Houston, D.W., King, M.L., 2000b. Germ plasm and molecular determinants of germ cell
fate. Curr. Top. Dev. Biol. 50, 155-181.
Houston, D.W., Zhang, J., Maines, J.Z., Wasserman, S.A., King, M.L., 1998. A Xenopus
DAZ-like gene encodes an RNA component of germ plasm and is a functional homo-
logue of Drosophila boule. Development 125, 171-180.
Howley, C., Ho, R.K., 2000. mRNA localization patterns in zebrafish oocytes. Mech. Dev.
92, 305-309.
Hudson, J.W., AlarcĀ“n, V.B., Elinson, R.P., 1996. Identification of new localized RNAs in
the Xenopus oocyte by differential display PCR. Dev. Genet. 19, 190-198.
Hudson, C., Woodland, H.R., 1998. Xpat, a gene expressed specifically in germ plasm and
primordial germ cells of Xenopus laevis. Mech. Dev. 73, 159-168.
Hulstrand, A.M., Schneider, P.N., Houston, D.W., 2010. The use of antisense oligonucle-
otides in Xenopus oocytes. Methods 51, 75-81.
Search WWH ::




Custom Search