Geology Reference
In-Depth Information
The usefulness of Equation (3.72) will be demonstrated further in
Example 3.10.
Although the electron activity is a hypothetical phenomenon, pe is a
useful parameter to describe the redox intensity of natural systems and
hence the species distribution under prevailing redox conditions (Ex-
ample 3.10).
Example 3.10: Calculate the pe values for the following solutions (298
K, I ¼ 0) (i) a solution at pH 2 containing { Fe 31 } ¼ 10 4.5 mol L 1 and
{ Fe 21 } ¼ 10 2.7 mol L 1 where log K ¼ 13; (ii) a neutral solution
containing { Mn 21 } ¼ 10 6 mol L 1 in equilibrium with the solid phase,
Mn IV O 2 and log K ¼ 40.84.
(i) At pH 2, the hydrated metal ion has not undergone hydrolysis
to any significant extent:
Fe 3 þ þ e Ð Fe 2 þ K ¼f Fe 2 þ g=f Fe 3 þ gf e g
pe ¼ log K þ log ðf Fe 3 þ g=f Fe 2 þ
¼ 13 þ log ð 10 4 : 5 = 10 2 : 7 Þ
¼ 13 1 : 8 ¼ 11 : 2
(ii)
MnO 2 þ 4H þ þ 2e Ð Mn 2 þ þ 2H 2 O
K ¼f Mn 2 þ g=f H þ g 4 f e g 2
pe ¼ 0 : 5 log K þ 0 : 5 log ðf H þ g 4 =f Mn 2 þ
¼ 20 : 42 þ 0 : 5 log ð 10 28 = 10 6 Þ
¼ 20 : 42 11 ¼ 9 : 42
For a fixed pH value (e.g. pH ¼ 2), the species distribution (e.g. where
{Fe T } ¼ 1 10 3 mol L 1 ) at different pe values can be illustrated by
plotting log{}against pe. This is analogous to the treatment of pH as
a master variable. The pe range is split into two parts, pe o pe 0 and
pe4pe 0 . Using pe 0 ¼ (1/n) log K, this becomes {e }4K 1 and
{e } o K 1 (because n ¼ 1 in this Example). Thereafter, construction
of the graph is achieved by the same method used in Example 3.5.
Search WWH ::




Custom Search