Biomedical Engineering Reference
In-Depth Information
115. Quan , R. , Yang , D. and Miao , X. , Biocompatibility of graded zirconia - hydroxyapa-
tite composite, Chinese journal of reparative and reconstructive surgery , volume: 20 ,
number: 5 , 2006 , pp. 569 - 573 .
116. Kim , H. W. , Georgiou , G. , Knowles , J. C. , Koh , Y. H. and Kim , H. E. , Calcium phos-
phates and glass composite coatings on zirconia for enhanced biocompatibility,
Biomaterials , volume: 25 , number: 18 , 2004 , pp. 4203 - 4213 .
117. Kong , Y. M. , Bae , C. J. , Lee , S. H. , Kim , H. W. and Kim , H. E. , Improvement in
biocompatibility of ZrO 2 - Al 2 O 3 nano-composite by addition of HA, Biomaterials ,
volume: 26 , number: 5 , 2005 , pp. 509 - 517 .
118. Mistry , A. S. and Mikos , A. G. , Tissue engineering strategies for bone regeneration ,
advances in biochemical engineering/biotechnology 2005 , pp. 94 , 1 - 22 .
119. Webster , T. J. , Waid , M. C. , McKenzie , J. L. , Price , R. L. and Ejiofor , J. U. , Nano -
biotechnology : carbon nanofi bres as improved neural and orthopaedic implants,
Nanotechnology , volume: 15 , 2004 , pp. 48 - 54 .
120. Shi , X. , Hudson , J. L. , Spicer , P. P. , Tour , J. M. , Krishnamoorti , R. and Mikos , A.G. ,
Injectable nanocomposites of single-walled carbon nanotubes and biodegradable
polymers for bone tissue engineering, Biomacromolecules , volume: 7 , number: 7 ,
2006 , pp. 2237 - 4 .
121. Supronowicz , P. R. , Ajayan , P. M. , Ullmann , K. R. , Arulanandam , B. P. , Metzger , D.
W. and Bizios , R. , Novel current - conducting composite substrates for exposing osteo-
blasts to alternating current stimulation, Journal of biomedical materials research ,
volume: 59 , volume: 3 , 2002 , pp. 499 - 506 .
122. Tsuchiya , H. , Macak , J. M. , Muller , L. , Kunze , J. , Muller , F. , Greil , P. , Virtanen , S .
and Schmuki , P. , Hydroxyapatite growth on anodic TiO2 nanotubes , Journal of bio-
medical materials research A. , volume: 77 , 2006 , pp. 534 - 541 .
123. Serro , A. P. and Saramago , B. , Infl uence of sterilization on the mineralization of
titanium implants induced by incubation in various biological model fl uids, Biomate-
rials , volume: 24 , 2003 , pp. 4749 - 4760 .
124. Barber , T. A. , Golledge , S. L. , Castner , D. G. and Healy , K. E. , Peptide modifi ed p
(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in
vitro , J. Biomed. Mater. Res. , volume: 64 , 2003 , pp. 38 - 47 .
125. Lu , X. , Leng , Y. , Zhang , X. , Xu , J. , Qin , L. and Chan , C. W. , Comparative study
of osteoconduction on micromachined and alkalitreated titanium alloy surfaces in
vitro and in vivo, Biomaterials , volume: 26 , 2005 , pp. 1793 - 1801 .
126. Macak , J. M. , Tsuchiya , H. , Taveira , L. , Ghicov , A. and Schmuki , P. , Self - organized
nanotubular oxide layers on Ti - 6Al - 7Nb and Ti - 6Al - 4V formed by anodization in
NH4F solutions, J. Biomed. Mater. Res. , 2005 , volume: 75 , pp. 928 - 933 .
127. Winkelmann , M. , Gold , J. and Hauert , R. , Chemically patterned, metal oxide based
surfaces produced by photolithographic techniques for studying protein- and
cell-surface interactions I: Microfabrication and surface characterization, Biomateri-
als , volume: 24 , 2003 , pp. 1133 - 1145 .
128. Balasundaram , G. and Webster , T. J. , A perspective on nanophase materials for
orthopedic implant applications, J. Mater. Chem. , volume: 16 , 2006 , pp. 3737 - 3745 .
129. Hoet , P. H. , Bruske - Hohlfeld , I. and Salata , O.V. , Nanoparticles — known and un-
known health risks, J. Nanobiotechnology. , volume: 2 , 2004 , pp. 2 - 12 .
130. Tamura , K. , Takashi , N. and Akasaka , T. , Effects of micro/nano particle size on cell.
function and morphology, Key Engr. Mat. , volume: 254 , 2004 , pp. 919 - 922 .
Search WWH ::




Custom Search