Biomedical Engineering Reference
In-Depth Information
99. Vance , R. J. , Miller , D. C. , Thapa . A. , Haberstroh , K. M. and Webster , T. J. , De-
creased fi broblast cell density on chemically degraded poly(lactic- co - glycolic acid),
polyurethane, and polycaprolactone, Biomaterials , volume: 25 , 2004 , pp. 2095 - 2103 .
100. Li , J. , Polymeric hydrogels . In Engineering materials for biomedical applications ,
pp. 7.1 - 7.18 , T. S. Hin (ed.), World Scientifi c , 2004 .
101. Lee , K. Y. and Mooney , D. J. , Hydrogels for tissue engineering , Chemical Reviews ,
volume: 101 , number: 7 , 2001 , pp. 1869 - 1879 .
102. Stevens , M. M. and George , J. H. , Exploring and engineering the cell surface
interface , Science , volume: 310 , 2005 , pp. 1135 - 1138 .
103. Bonzani , I. C. , George , J. H. and Stevens , M. M. , Novel materials for bone and carti-
lage regeneration, Current Opinion in Chemical Biology , volume: 10 , 2006 , pp. 1 - 8 .
104. Lia , M. , Guob , Y. , Weib , Y. , MacDiarmidc , A. G. and Lelkes , P. I. , Electrospinning
polyaniline - contained gelatin nanofi bers for tissue engineering applications, Bioma-
terials , volume: 27 , 2006 , pp. 2705 - 2715 .
105. Kisiday , J. , Jin , M. , Kurz , B. , Hung , H. , Semino , C. and Zhang , S. , et al., Self -
assembling peptide hydrogel fosters chondrocyte extracellular matrix production and
cell division: implications for cartilage tissue repair. Proc. Natl. Acad. Sci. , volume:
99 , 2002 , pp. 9996 - 10001 .
106. Zhang , L. , Ramsaywack , S. , Fenniri , H. and Webster , T. J. , Enhanced osteoblast
adhesion on self-assembled nanostructured hydrogel scaffolds, Tissue engineering , in
press, 2007 .
107. Yamada , S. , Heymann , D. , Bouler , J. N. and Daculsi , G.D. , Osteoclastic resorption
of calcium phosphate ceramics with different hydroxyapatite/tricalcium phosphate
ratios , Biomaterials , volume: 18 , pp. 1037 - 1041 .
108. Ramachandra , R. R. , Roopa , H. N. and Kannan , T. S. , Solid state synthesis and
thermal stability of HAP and HAP-
- TCP composite ceramic powders , Journal of
materials science Materials in medicine , volume: 8 , 1997 , pp. 511 - 518 .
109. Tampieri , A. , Celloti , G. , Szontagh , F. and Landi , E. , Sintering and characterization
of HA and TCP bioceramics with control of their strength and phase purity, Journal
of materials science, Materials in Medicine , volume: 8 , 1997 , pp. 29 - 37 .
110. Cuneyt , A. T. , Korkusuz , F. , Timucin , M. and Akkas , N. , An investigation of the
chemical synthesis and high-temperature sintering behavior of calcium hydroxyapa-
tite (HA) and Tricalcium phosphate (TCP) bioceramic, Journal of materials science,
Materials in medicine , volume: 8 , 1997 , pp. 91 - 96 .
111. Hench , L. L. , Bioceramics , Journal of the American Ceramic Society , volume: 81 ,
1998 , pp. 705 - 1728 .
112. Homaeigohar , S. SH. , Shokrgozar , M. A. , Sadi , A. Y. , Khavandi , A. , Javadpour , J.
and Hosseinalipour , M. , In vitro evaluation of biocompatibility of beta-tricalcium
phosphate-reinforced high-density polyethylene; an orthopedic composite, Wiley Pe-
riodicals Inc. , 2005 .
113. Murugan , R. and Ramakrishna , S. , Bioresorbable composite bone paste using
polysaccharide based nano hydroxyapatite, Biomaterials , volume: 25 , number: 17 ,
2004 , pp. 3829 - 3835 .
114. Esmaiel , J. , Aqueous Based Hydrogel/Apatite Nanocomposite Scaffolds for Guided
Bone Regeneration, Topical H #256d (TH014)—Biomedical Applications of Nano-
technology (Bionanotechnology), AIChE Annual Meeting, Cincinnati, OH, Oct. 30 -
Nov 4, 2005 .
β
Search WWH ::




Custom Search