Biomedical Engineering Reference
In-Depth Information
Integrating.d U .for.the.total.work. U ,
Q Q
C
d
1
2
Q
C
2
1
2
U
=
=
=
CV
2 .
(8.6.2.5)
.
To.ind.the.force.generated.by.a.parallel.plate.actuator,.we.can.use.the.principle.of.virtual.work.by.con-
sidering.the.work.done.when.the.plates.of.a.capacitor.are.moved.a.small.distance.Δ z .closer.together.when.
a.constant.voltage. V ,.set.by.a.battery,.is.applied.between.the.plates..Since.the.plates.have.opposite.charge,.
the.force.between.the.plates.is.attractive..he.decrease.in.the.gap.causes.the.capacitance.of.the.capacitor.to.
increase.by.Δ C .and.an.amount.of.charge.Δ Q .to.be.transferred.from.the.battery.to.the.capacitor,.increas-
ing.its.stored.energy..We.can.then.balance.the.work.done.by.the.battery.to.transfer.the.charge.to.the.work.
done.by.the.actuator.and.the.potential.energy.stored.in.the.capacitor.when.the.plates.move.closer.together:
W
=
W
+
U
(8.6.2.6)
.
battery
capacitor
capacitor
.
+ 1
2
V Q F z
=
V C
2
(8.6.2.7)
.
.
Using.Equation.xx.to.substitute.for.Δ Q .at.constant. V ,
.
Q CV
= → =
Q V C
V Q V C
=
2
.
(8.6.2.8)
V
1
2
V C F z
2
=
+
V C
2
(8.6.2.9)
.
.
= 1
2
F z
V C
(8.6.2.10)
.
2
.
= 1
2
2
C
z
F
V
(8.6.2.11)
.
.
We.can.calculate.the.force.by.taking.the.derivative.of.the.capacitance.with.respect.to.the.separation.
between.the.plates:
=
C
z
=
A
A
.
.
(8.6.2.12)
ε
ε
0
0
(
)
z
g
z
2
V
g
z
0
0
So.that.the.electrostatic.force.is.given.by
1
2
C
z
ε
A V
g
2
.
.
0
F
e =
V
2
=
(8.6.2.13)
(
)
2
2
z
0
8.6.3 Mechanical restoring Force
A.spring.is.typically.used.to.apply.a.mechanical.restoring.force. F m .for.electrostatic.actuators,.as.shown.
in. Figure.8.24 ..he.spring.can.be.linear,.following.Hooke's.Law,
F
m = −
kz
(8.6.2.14)
.
.
where. k .is.the.spring.constant.and. z .is.the.distance.to.which.the.spring.is.either.stretched.or.compressed..
As.described.below,.in.some.situations.it.can.be.useful.to.use.a.nonlinear.spring. where.the.restoring.
force.does.not.vary.linearly.with.the.displacement.
 
Search WWH ::




Custom Search