Biomedical Engineering Reference
In-Depth Information
73. Ray, S. and M. P. Walton. 1986. Monolithic optoelectronic receiver for Gbit oper-
ation. Proceedings of the IEEE MTT-S International Microwave Symposium , June, in
Baltimore, MD.
74. Kilcoyne, Kasemset, Asatourian, and Beccue. Optical data transmission. SPIE .
75. Ibid.
76. Midwinters, J. E. and J. R. Sten. 1978. Propagation studies of graded index
fiber installed on cable in operation duct route. IEEE Trans. Commun . COM-26
(7):1015-1020 (July).
77. Yariv, A. 1976. Introduction to Optical Electronics, 2nd ed. New York: Holt,
Rinehart, and Winston.
78. Ross, W. E., D. Psaltis, and R. H. Anderson. 1982. Two-dimensional magneto-
optic spatial light modulator for signal processing. Proc. SPIE 341:192.
79. Goodman, J. W., A. R. Dias, and L. M. Woody. 1978. Fully parallel, high-speed
incoherent optical method for performing the discrete Fourier transform. Opt.
Lett . 2(1):1-3.
80. Dapkus, P. D. 1982. Optical communication for IC's. Rockwell International
Report, DTIC no. AD-A112239, March.
81. 1981. WDM advances enhance fiber-optic links. EDN News , February 20:1.
82. Schmidt, R. V. and I. P. Kaminow. 1975. Acousto-optic Bragg deflection in LiNbO3
Ti-diffused waveguides. IEEE J. Quantum Electron . QE-11 (1) January: 57-59.83
83. Alferness, R. C. 1982. Waveguide electro-optic modulators. IEEE Trans.
Microwave Theory Tech . MIT-30 (8):1121-1137 (August).
84. Francis, C. L. and Instrument Development Team. 1994. Enhanced imagery
through laser illumination (white paper). U.S. Army Aberdeen Test Center,
Aberdeen Proving Ground, MD.
85. Nebolsine, Peter, Christopher Rollins, and Edmond Lo. 1994. High-frame rate
data collection for advanced armor instrumentation enhanced imagery. Final
report, subcontract no. FMD9401. Physical Sciences Inc., October.
86. Nebolsine, P., D. R. Snyder, and J. M. Grace. 2001. MHz class repetitively
Q-switched, high-power ruby lasers for high-speed photographic applications.
Paper presented at AIAA Aerospace Sciences Meeting , January, in Reno, NV.
87. Piehler, T., B. Homan, R. Ehlers, R. Lottero, and K. McNesby. 2006. High
speed laser imaging, emission and temperature measurements of explosions.
(ARL-RP-137). Proceedings of the Insensitive Munitions & Energetic Materials
Technology Symposium , April, in Bristol, UK.
88. Defense Advanced Research Projects Agency Microsystems Technology Office.
Super high efficiency diode sources (SHEDS) program. www.darpa.mil/mto/
programs/sheds/index.html.
89. Seurin, J.-F., C. L. Ghosh, V. Khalfin, et al. 2008. High-power high-efficiency 2-D
VCSEL arrays. Proc. SPIE 6908:690808.
90. Shaw, L. L., L. L. Steinmetz, W. C. Behrendt et al. 1984. A high-speed, eight-
frame electro-optic camera with multipulsed ruby laser illuminator. Lawrence
Livermore National Laboratory, UCRL-90478, September.
91. Shaw, L. L., S. A. Muelder, A. T. Rivers, J. L. Dilnaure, and R. D. Breithanpt. 1992.
Electro-optic frame photography with pulsed ruby illumination. Lawrence
Livermore National Laboratory, UCRL-JC-112232, November.
92. Baum, D. W., L. L. Shaw, S. C. Simonson, and K. A. Winer. 1993. Linear collapse
and early jet formation in a shaped charge. Proceedings of the14th International
Symposium on Ballistics 2, September 26-29:13-22.
Search WWH ::




Custom Search