Biomedical Engineering Reference
In-Depth Information
( 3.245 ) 2 and ( 3.245 ) 3 (regarding the transformation in ( 3.245 ) 3 , the following
ð 4 Þ
relation based on ( 3.69 ) is noticeable: o = oC ¼ 1 I 1
o = o ð Þ 1 =ðÞ o = o ð Þ )
S ¼ 2J 1 F o w ðÞ
oC F T ; P I ¼ JF 1 S ¼ 2 o w ðÞ
oC F T
ð 3 : 245 Þ
P II ¼ JF 1 S F T ¼ 2 o w ðÞ
oC o w ðÞ
:
oG
Isotropic Materials - Representations in the Form of Invariants. The partial
derivative qw/qC occurring ( 3.245 ) follows, using ( 3.181 ) together with the chain
rule from
o w ðÞ
oC ¼ o wC I ; C II ; C III
ð
Þ
¼ o w
oC I
oC I
oC þ o w
o C II
oC þ o w
o C III
oC
: ð 3 : 246 Þ
oC
oC II
oC III
Furthermore, the three partial derivations qC i /qC (i = I, II, III) occurring in
( 3.246 ) are obtained using ( 3.180 ) based on the G ÂTEAUX variation as follows
o C I
oC ¼ I ;
o C II
oC ¼ C I I C
ð 3 : 247 Þ
o C III
oC ¼ C II I C I C þ C 2 ¼ C III C 1 :
Substituting ( 3.247 )in( 3.246 ) finally leads to
I ow
o w ðÞ
oC ¼ C III
oC III C 1 þ o w
ow
ow
oC II
þ C I
oC II C
ð 3 : 248 Þ
oC I
establishing the structures of the three stress tensors ( 3.245 ).
Specifically, substituting ( 3.248 )in( 3.245 ) 1 and noting that F I F T ¼ F
F T ¼ B ; F C F T ¼ F F T F F T ¼ B 2 and F C 1 F T ¼ F F T F
1
F T ¼ I as well as using the equality of the invariants C and B, namely C i ¼
B i i ¼ 1 ; 2 ; ð Þ (this can be inferred from C I ¼ trC ¼ trF F T ¼ trF T F ¼
trB ¼ B I etc.), the dependence of S on the left C AUCHY strain tensor can be derived
to
B ow
:
oB III I þ o w
ow
ow
oB II
S ¼ g ð B Þ¼ 2J 1
oB II B 2
B III
þ B I
ð 3 : 249 Þ
oB I
Equations ( 3.245 )-( 3.248 ) and ( 3.249 ) provide the relevant constitutive stress-
strain equations of non-linear hyperelastic isotropic materials, where the specific
strain energy functions w can readily be substituted.
Isotropic Materials - Representations in the Form of Principal Stretches.
The partial derivative qw/qC occurring in ( 3.245 ) follows using ( 3.185 ) together
with the chain rule from
Search WWH ::




Custom Search