Biomedical Engineering Reference
In-Depth Information
where the E i are the moduli of elasticity and the G ij are the shear moduli and the m ij
are the P OISSON ratios. Similarly, this approach applies for arbitrary anisotropies
such as monotropy, transversal isotropy etc.
In the case of plane state stress where w.l.o.g, both orthonormal basis vectors e 1
and e 2 are situated in-plane and a change in thickness is neglected e 33 ¼ e 23 ¼
e 13 ¼ 0 ; ( 3.290 ) degenerates to
r 11 ¼ u 1 e 11 þ u 2 e 22 ;
r 22 ¼ u 2 e 11 þ u 4 e 22 ;
r 12 ¼ r 21 ¼ u 9 e 12 ð 3 : 294 Þ
with the four material coefficients resulting from ( 3.290 ) (the moduli of elasticity
and the bulk moduli and the P OISSON ratios with index 3 vanish in this process):
u 1 E 1
u 2 m 12 E 1 E 2
u 4 E 1 E 2
;
;
;
u 9 2G 12
N
N
N
N : ¼ E 1 m 12 E 2
u 3 ¼ u 5 ¼ u 6 ¼ u 7 ¼ u 8 ¼ 0 ;
ð 3 : 295 Þ
Anisotropic Materials - H OLZAPFEL -G ASSER -O GDEN Model. Based on the
strain energy function of the H OLZAPFEL -G ASSER -O GDEN model ( 3.230 ) 2 , the vol-
umetric part of the K IRCHHOFF stress tensors ( 3.264 ) 1 derives to
s J ¼ 1
D
I :
J 2 1
ð 3 : 296 Þ
Considering the partial derivative derived using ( 3.230 ) 1 -( 3.232 )
Þ k 1 X
N
o w
o C ¼ U 1 I þ j 1 3j
U 2 i K 0i
ð
i ¼ 1
with
e k 2 E i
ð 3 : 297 Þ
C ; H ð Þ : ¼ c 1 þ j 2 k 1 X
N
C I 3 þ 1 3j
j
U 1 ¼ U 1
C IV i 1
ð
Þ
i ¼ 1
e k 2 E i
C ; H ð Þ : ¼ C I 3 þ 1 3j
j
U 2 i ¼ U 2 i
C IV i 1
ð
Þ
and using ( 3.264 ) 3 , the deviatoric part of the K IRCHHOFF stress tensors is obtained:
"
#
Þ k 1 X
N
s ¼ 2 ð 4 Þ U 1 B þ j 1 3j
U 2 i F K 0i F T
ð
ð 3 : 298 Þ
i ¼ 1
where B : ¼ F F T
is the modified left C AUCHY strain tensor.
In the isotropic case with j ¼ 1 = 3 and considering the definitions ( 3.232 ) and
( 3.297 ),
( 3.298 )
transforms
into
the
following
constitutive
equation,
which
depends only on B (note that C I ¼ B I )
Search WWH ::




Custom Search