Biomedical Engineering Reference
In-Depth Information
S ¼ u 1 e 11 þ u 2 e 22 þ u 3 e 33
ð
Þ e 1 e 1 þ u 2 e 11 þ u 4 e 22 þ u 5 e 33
ð
Þ e 2 e 2
þ u 3 e 11 þ u 5 e 22 þ u 6 e 33
ð
Þ e 3 e 3
ð 3 : 289 Þ
þ u 7 e 12 e 1 e 2 þ e 2 e 1
ð
Þþ u 8 e 13 e 1 e 3 þ e 3 e 1
ð
Þþ u 9 e 23 e 2 e 3 þ e 3 e 2
ð
Þ:
and from ( 3.289 ) by comparison of coordinates, the six equations of H OOKE ' S law
for orthotropic materials in coordinate notation follow:
r 11 ¼ u 1 e 11 þ u 2 e 22 þ u 3 e 33
r 22 ¼ u 2 e 11 þ u 4 e 22 þ u 5 e 33
r 33 ¼ u 3 e 11 þ u 5 e 22 þ u 6 e 33
r 12 ¼ u 9 e 12 ;
ð 3 : 290 Þ
r 13 ¼ u 8 e 13 ;
r 23 ¼ u 7 e 23 :
Transforming ( 3.290 ) into the form r ¼ P e with the V OIGT 6 1 vectors
e : ¼ð e 11 ; e 22 ; e 33 ; e 23 ; e 13 ; e 12 Þ and r : ¼ð r 11 ; r 22 ; r 33 ; r 23 ; r 13 ; r 12 Þ as well as the
symmetric stiffness matrix P
2
3
u 1 u 2 u 3 000
u 2 u 4 u 5 000
u 3 u 5 u 6 000
000u 7 00
0000u 8 0
00000u 9
4
5
P : ¼
;
ð 3 : 291 Þ
inverting
the flexibility
matrix
for
the
orthotropic
case
(cf.
(Altenbach
and
Altenbach 1994))
2
4
3
5
1 = E 1 m 12 = E 1 m 13 = E 1
0
0
0
m 12 = E 1
1 = E 2 m 23 = E 2
0
0
0
m 13 = E 1 m 23 = E 2
1 = E 3
0
0
0
P 1
: ¼
ð 3 : 292 Þ
0
0
0
2 = G 23
0
0
0
0
0
0
2 = G 31
0
0
0
0
0
0
2 = G 12
and comparing then the coordinates with ( 3.291 ) leads to the following nine
independent material coefficients
u 1 E 1 E 2 m 23 E 3
u 2 E 1 E 2 m 12 E 2 þ m 13 m 23 E 3
ð
Þ
u 3 E 1 E 2 E 3 m 13 þ m 12 m 23
ð
Þ
;
;
N
N
N
u 4 E 2 E 1 m 13 E 3
u 5 E 2 E 3 m 23 E 1 þ m 12 m 13 E 2
ð
Þ
u 6 E 2 E 3 E 1 m 12 E 2
;
;
N
N
N
u 7 2G 12 ;
u 8 2G 31 ;
u 9 2G 23
þ m 13 E 2 E 3 m 13 þ m 12 m 23
N E 2 E 1 m 12 E 2
ð
Þþ m 23 E 3 m 23 E 1 þ m 12 m 13 E 2
ð
Þ
ð 3 : 293 Þ
Search WWH ::




Custom Search