Biomedical Engineering Reference
In-Depth Information
22. Hambli, R., Soulat, D., Gasser, A., Benhamou, C.L.: Strain-damage coupled algorithm for
cancellous bone mechano-regulation with spatial function influence, Vol. 198. Comput.
Methods Appl. Mech. Eng. 33-36(1), 2673-2682 (2009)
23. Hambli, R., Katerchi, K., Benhamou, C.L.: Multiscale methodology for bone remodelling
simulation using coupled finite element and neural network computation. Biomech. Model.
Mechanobiol. 10(1), 133-145 (2011)
24. Harrigan,
T.P.,
Jasty,
M.,
Mann,
R.W.,
Harris,
W.H.:
Limitations
of
the
continuum
assumption in cancellous bone. J. Biomech. 21, 269-275 (1988)
25. Hernandez, C.J., Beaupre, G.S., Keller, T.S., Carter, D.R.: The influence of bone volume
fraction and ash fraction on bone strength and modulus. Bone 29, 74-78 (2001)
26. Hernandez, C.J., Gupta, A., Keaveny, T.M.: A biomechanical analysis of the effects of
resorption cavities on cancellous bone strength. J. Bone Miner. Res. 21(8), 1248-1255 (2006)
27. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4,
251-257 (1991)
28. Hurtado, J.E.: Analysis of one-dimensional stochastic finite elements using neural networks.
Probab. Eng. Mech. 17(1), 35-44 (2002)
29. Jenkins, W.M.: An introduction to neural computing for the structural engineer. Struct. Eng.
75(3), 38-41 (1997)
30. Karim, L., Vashishth, D.: Role of trabecular microarchitecture in the formation,
accumulation, and morphology of microdamage in human cancellous bone. J. Orthop. Res.
29(11), 1739-1744 (2011)
31. Keyak, J.H., Rossi, S.A., Jones, K.A., Les, C.M., Skinner, H.B.: Prediction of fracture location
in the proximal femur using finite element models. Med. Eng. Phys. 23, 657-664 (2001)
32. Kosmopoulos, V., Schizas, C., Keller, T.S.: Modeling the onset and propagation of trabecular
bone microdamage during low-cycle fatigue. J. Biomech. 41, 515-522 (2008)
33. Lefik, M., Boso, D.P., Schrefler, B.A.: Artificial neural networks in numerical modelling of
composites. Comput. Methods Appl. Mech. Eng. 198, 1785-1804 (2009)
34. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater.
Technol. 107, 83-89 (1985)
35. Martin, R.B.: Porosity and specific surface of bone. Crit. Rev. Biomed. Eng. 10, 179-222 (1984)
36. Martin, R.B., Burr, D.R., Sharkey, N.A.: Skeletal tissue mechanics. Springer, New York (1998)
37. Morgan, E.F., Keaveny, T.M.: Dependence of yield strain of human trabecular bone on
anatomic site. J. Biomech. 34, 569-577 (2001)
38. Morgan, E.F., Yeh, O.C., Keaveny, T.M.: Damage in trabecular bone at small strains. Eur.
J. Morphol. 42(1-2), 13-21 (2005)
39. Nagaraja, S., Couse, T.L., Guldberg, R.E.: Trabecular bone microdamage and microstructural
stresses under uniaxial compression. J. Biomech. 38(4), 707-716 (2005)
40. Nicolella, D.P., Nicholls, A.E., Lankford, J.: Micromechanics of creep in cortical bone.
Trans. Orthop. Res. Soc. 23, 137 (1998)
41. O'Brien, F.J., Taylor, D., Clive Lee, T.: Microcrack accumulation at different intervals during
fatigue testing of compact bone. J. Biomech. 36, 973-980 (2003)
42. Pattin, C.A., Caler, W.E., Carter, D.R.: Cyclic mechanical fatigue property degradation
during fatigue loading of cortical bone. J. Biomech. 29(1), 69-79 (1996)
43. Prendergast, P.J., Taylor, D.: Prediction of bone adaptation using damage accumulation.
J. Biomech. 27(8), 1067-1076 (1994)
44. Rafiq, M.Y., Bugmann, G., Easterbrook, D.J.: Neural network design for engineering
applications. Comput. Struct. 79(17), 1541-1552 (2001)
45. Rapillard, L., Charlebois, M., Zysset, P.K.: Compressive fatigue behaviour of human
vertebral trabecular bone. J. Biomech. 39, 2133-2139 (2006)
46. Taylor, D., Lee, T.C.: A crack growth model for the simulation of fatigue in bone. Int.
J. Fatigue 2, 387-395 (2003)
47. Taylor, M., Cotton, J., Zioupos, P.: Finite element simulation of the fatigue behaviour of
cancellous bone. Meccanica 37, 419-429 (2002)
Search WWH ::




Custom Search