Biomedical Engineering Reference
In-Depth Information
References
1. Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K., Nakamura, K.: Prediction of
strength and strain of the proximal femur by a CT-based finite element method. J. Biomech.
40, 1745-1753 (2007)
2. Bowman, S.M., Guo, X.E., Cheng, D.W., Keaveny, T.M., Gibson, L.J., Hayes, W.C.,
McMahon, T.A.: Creep contributes to the fatigue behaviour of bovine trabecular bone.
J. Biomech. Eng. 120, 647-654 (1998)
3. Bugmann, G.: Normalized radial basis function networks. Neurocomput, Special Issue Radial
Basis Func. Netw. 20, 97-110 (1998)
4. Burr, D.B.: Remodeling and the repair of fatigue damage, Calcified Tissue Int 53(Suppl 1),
S75-S81 (1993)
5. Carter, D.R., Fyhrie, D.P., Whalen, R.T.: Trabecular bone density and loading history:
regulation of tissue biology by mechanical energy. J. Biomech. 20, 785-795 (1987)
6. Chaboche, J.L.: Continuum damage mechanics a tool to describe phenomena before crack
initiation. Nucl. Eng. Des. 64, 233-247 (1981)
7. Choi, K., Goldstein, S.A.: A comparison of the fatigue behaviour of human trabecular and
cortical bone tissue. J. Biomech. 25(12), 1371-1381 (1992)
8. Cowin, S.C.: Mechanosensation and fluid transport in living bone. J. Musculoskel. Neuron.
Interact. 2(3), 256-260 (2002)
9. Dendorfer, S., Maier, H.J., Hammer, J.: Anisotropy of the fatigue behaviour of cancellous
bone. J. Biomech. 41(3), 636-641 (2008)
10. Dendorfer, S., Maier, H.J., Hammer, J.: Fatigue damage in cancellous bone: an experimenytal
approach from continuum to micro scale. J. Mech. Behav. Biomed. Mater. 2, 113-119 (2009)
11. Dragomir-Daescu, D., Op Den Buijs, J., McEeligot, S., Dai, Y., Entwistle, R.C., Salas, C.,
Melton III, J., Bennet, E., Khosla, S., Amin, S.: Robust QCT/FEA models of proximal femur
stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 39(2),
742-755 (2011)
12. Faulkner, K.G., Cummings, S.R., Black, D., Palermo, L., Gluer, C.C., Genant, H.K.: Simple
measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures.
J. Bone Miner. Res. 8, 1211-1217 (1993)
13. Faulkner, K.G., Cummings, S.R., Black, D., Palermo, L., Gluer, C.C., Genant, H.K.: Simple
measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures.
J. Bone Miner. Res. 21, 101-108 (1993)
14. Fazzalari, N.L., Kuliwaba, J.S., Forwood, M.R.: Cancellous bone microdamage in the
proximal femur: influence of age and osteoarthritis on damage morphology and regional
distribution. Bone 31(6), 697-702 (2002)
15. Ghanbari, J., Naghdabadi, R.: Nonlinear hierarchical multiscale modeling of cortical bone
considering its nanoscale microstructure. J. Biomech. 42(10), 1560-1565 (2009)
16. Haddock, S.M., Yeh, O.C., Mummaneni, P.V., Rosenberg, W.S., Keaveny, T.M.: Similarity in
the fatigue behaviour of trabecular bone across site and species. J. Biomech. 37, 181-187 (2004)
17. Hambli, R.: Statistical damage analysis of extrusion processes using finite element method
and neural networks simulation. Finite Elem. Anal. Des. 45(10), 640-649 (2009)
18. Hambli, R.: Application of neural networks and finite element computation for multiscale
simulation of bone remodeling. J. Biomech. Eng. 132(11), 114502 (2010)
19. Hambli, R.: Numerical procedure for multiscale bone adaptation prediction based on neural
networks and finite element simulation. Finite Elem. Anal. Design 47(7), 835-842 (2011)
20. Hambli, R.: Apparent damage accumulation in cancellous bone using neural networks.
J. Mech. Behav. Biomed. Mater. 4(6), 868-878 (2011)
21. Hambli, R., Chamekh, A., Bel Hadj Salah, H.: Real-time deformation of structure using finite
element and neural networks in virtual reality applications. Finite Elem. Anal. Des. 42(11),
985-991 (2006)
Search WWH ::




Custom Search