Biomedical Engineering Reference
In-Depth Information
23. Leak, L.V.: Electron microscopic observations on lymphatic capillaries and the structural
components of the connective tissue-lymph interface. Microvasc. Res. 2, 361-391 (1970)
24. Li, B., Silver, I., Szalai, J. P., Johnson, M. G.: Pressure-volume relationships in sheep
mesenteric lymphatic vessels in situ: response to hypovolemia. Microvasc. Res. 56, 127-138
(1998)
25. Macdonald, A., Tabor, G., Winlove, C.P., Arkill, K., McHale, N.: Computational and
experimental analysis of lymphatic valves. J. Biomech. 39(Suppliment 1), S295 (2006)
26. Macdonald, A., Tabor, G., Winlove, P., Arkill, K., McHale, N.: The fluid dynamics of
lymphatic vessels. Poster presentation at Cardiovascular Haemodynamics and Modelling,
25th-27th September 2005, Edinburgh (2005)
27. Macdonald, A.J.: The fluid dynamics of lymphatic vessels. PhD thesis, University of Exeter
(2007)
28. Macdonald, A.J., Arkill, K.P., Tabor, G.R., McHale, N.G., Winlove, C.P.: Modeling flow in
collecting lymphatic vessels: one-dimensional flow through a series of contractile elements.
Am. J. Physiol. Heart Circ. Physiol. 295, H305-H313 (2008)
29. Marzo, A., Luo, X.Y., Bertram, C.D.: Three-dimensional collapse and steady flow in thick-
walled flexible tubes. J. Fluids Struct. 20, 817-835 (2005)
30. McHale, N.G., Roddie, I.C.: The effect of transmural pressure on pumping activity in isolated
bovine lymphatic vessels. J. Physiol. 261, 255-269 (1976)
31. Mendoza, E., Schmid-Schönbein, G.W.: A model for mechanics of primary lymphatic valves.
J. Biomech. Eng. 125:407-414 (2003)
32. Mirski, H.P., Miller, M.J., Linderman, J.J., Kirschner, D.E.: Systems biology approaches for
understanding cellular mechanisms of immunity in lymph nodes during infection. J. Theor.
Biol. 287, 160-170 (2011)
33. Murray, C.D.: The physiological principle of minimum work: 1. The vascular system and the
cost of blood volume. Proc. Natl Acad. Sci. USA 12(3), 207-214 (1926)
34. Quick, C.M., Ngo, B.L., Venugopal, A.M., Stewart, R.H.: Lymphatic pump-conduit duality:
contraction of postnodal lymphatic vessels inhibits passive flow. Am. J. Physiol. Heart Circ.
Physiol. 296, H662-H668 (2009)
35. Quick, C.M., Venugopal, A.M., Gashev, A.A., Zawieja, D.C., Stewart, R.H.: Intrinsic pump-
conduit behavior of lymphangions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292,
R1510-R1518 (2007)
36. Rahbar, E., Moore, J.E.: A model of a radially expanding and contracting lymphangeon.
J. Biomech. 44, 1001-1007 (2011)
37. Reddy, N.P., Krouskop, T.A., Newell, P.H.: Biomechanics of a lymphatic vessel. Blood
Vessels 12, 261-278 (1975)
38. Reddy, N.P., Krouskop, T.A., Newell, P.H.: A computer model of the lymphatic system.
Comp. Biol. Med. 7, 181-197 (1977)
39. Roose, T., Fowler, A.C.: Network development in biological gels: role in lymphatic vessel
development. Bull. Math. Biol. 70(6), 1772-1789 (2008)
40. Roose, T., Swartz, M.A.: Multiscale modeling of lymphatic drainage from tissues using
homogenization theory. J. Biomech. 45, 107-115 (2012)
41. Schmid-Schönbein, G.: The second valve system in lymphatics. Lymphat. Res. Biol. 1,
25-29 (2003)
42. Schmid-Schönbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70(4), 987-1028
(1990)
43. Schmid-Schonbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70, 987-1026
(1990)
44. Sherwin, S.J., Franke, V., Peiró, J., Parker, K.: One-dimensional modelling of a vascular
network in space-time variables. J. Eng. Math. 47, 217-250 (2003)
45. Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the
cardiovascular system. Biomed. Eng. OnLine 10, 33 (2011)
46. Shim, E.B., Kamm, R.D.: Numerical simulation of steady flow in a compliant tube or channel
with tapered wall thickness. J. Fluids Struct. 16(8), 1009-1027 (2002)
Search WWH ::




Custom Search