Biomedical Engineering Reference
In-Depth Information
Acknowledgments
Tiina
Roose
acknowledges
the
award
of
a
Royal
Society
University
Research Fellowship to fund her research.
References
1. Arkill, K.P., Moger, J., Winlove, C.P.: The structure and mechanical properties of collecting
lymphatic vessels: an investigation using multimodal nonlinear microscopy. J. Anat. 216,
547-555 (2010)
2. Baldazzi, V., Paci, P., Bernaschi, M., Castiglione, F.: Modelling lymphocyte homing and
encounters in lymph nodes. BMC Bioinform. 10, 387-398 (2009)
3. Bergel, D.H.: The static elastic properties of the arterial wall. J. Physiol. 156, 445-457 (1961)
4. Berk, D.A., Swartz, M.A., Leu, A.J., Jain, R.K.: Transport in lymphatic capillaries. II.
Microscopic velocity measurement with fluorescence photobleaching. Am. J. Physiol. Heart
Circ. Physiol. 270, H330-H337 (1996)
5. Bertram, C.D., Macaskill, C., Moore, J.E.: Simulation of a chain of collapsible contracting
lymphangions with progressive valve closure. J. Biomech. Eng. 133, 011008-1-011008-10
(2011)
6. Boardman, K.C., Swartz, M.A.: Interstitial flow as a guide for lymphangiogenesis. Circ. Res.
92, 801-808 (2003)
7. Cassella, M., Skobe, M.: Lymphatic vessel activation in cancer. Ann. N. Y. Acad. Sci. 979,
120-130 (2002)
8. Collins, T.P., Tabor, G.R., Young, P.G.: A computational fluid dynamics study of inspiratory
flow in orotracheal geometries. Med. Biol. Eng. Comput. 45(9), 829-836 (2007)
9. Drake, R.E., Allen, S.J., Katz, J., Gabel, J.C., Laine, G.A.: Equivalent circuit technique for
lymph flow studies. Am. J. Physiol. Heart Circ. Physiol. 251, H1090-H1094 (1986)
10. Friedman, A., Lolas, G.: Analysis of a mathematical model of tumor lymphangiogeneis.
Math. Models Meth. Appl. Sci. 15, 95-107 (2005)
11. Fung, Y.C.: Biomechanics: Circulation. 2nd edn. Springer, New York (1997)
12. Galie, P., Spilker, R.L.: A two-dimensional computational model of lymph transport across
primary lymphatic valves. J. Biomech. Eng. 131, 1297-1307 (2009)
13. Gnepp, D.R.: Lymphatics. In: Staub, N.C., Taylor, A.E. (eds) Edema, pp. 263-298. Raven
Press, New York (1984)
14. Gnepp, D.R., Green, F.H.: Scanning electron microscopy of collecting lymphatic vessels and
their comparison to arteries and veins. Scan. Electron Microsc. 3, 756-762 (1979)
15. Gnepp, D.R., Green, F.H.Y.: Scanning electron-microscopic study of canine lymphatic
vessels. Lymphology 13(2), 91-99 (1980)
16. Grotberg, J.B., Jensen, O.E.: Biofluid mechanics in flexible tubes. Ann. Rev. Fluid Mech. 36,
121-147 (2004)
17. Guo,
Z.,
Sloot,
P.M.A.,
Tay,
J.C.:
A
hybrid
agent-based
approach
for
modeling
microbiological systems. J. Theor. Biol. 255, 163-175 (2008)
18. Hajjami, H.M.-E., Petrova, T.V.: Developmental and pathological lymphangiogenesis: from
models to human disease. Histochem. Cell Biol. 130, 1063-1078 (2008)
19. Jain, R.K.: Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv.
Rev. 46, 149-168 (2001)
20. Jussila, L., Alitalo, K.: Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82,
673-700 (2002)
21. Lambert, M.W., Benoit, J.N.: Mathematical model of intestinal lymph flow and lymphatic
pumping. FASEB J. 6(5), A2078 (1992)
22. Lauweryns, J.M.: Stereomicroscopic funnel-like architecture of pulmonary lymphatic valves.
Lymphology 4(4), 125-132 (1971)
Search WWH ::




Custom Search