Biomedical Engineering Reference
In-Depth Information
Boston, MA: Elsevier Academic Press, pp. 115±126, 2004.
82. Cooper SL, Visser SA, Hergenrother RW, Lamba NMK. Polymers. In: Biomaterials
Science: An Introduction to Materials in Medicine, Ratner BD (ed.), Boston, MA:
Elsevier Academic Press, pp. 67±79, 2004.
83. Kim JY, Khang D, Lee JE, Webster TJ. Decreased macrophage density on carbon
nanotube patterns on polycarbonate urethane. J Biomed Mater Res A 88(2), 419±
426, 2009.
84. Li W-J, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable
anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal
tissue engineering. J Biomech 40, 1686, 2007.
85. Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of
engineered meniscus constructs. Biomaterials 28, 1967, 2007.
86. Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human
mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the
superficial zone of articular cartilage. Tissue Eng Part A 15(4), 913±921, 2009.
87. Zhang SM, Cui FZ, Liao SS, Zhu Y, Han L. Synthesis and biocompatibility of
porous nano-hydroxyapatite/collagen/alginate composite. J Mater Sci Mater Med
14(7), 641±645, 2003.
88. Butler D, Goldstein S, Guilak F. Functional
tissue engineering:
the role of
biomechanics. Trans ASME 122, 570, 2000.
89. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation
of articular cartilage in compression: theory and experiments. J Biomech Eng 102,
73, 1980.
90. Riesle J, Hollander AP, Langer R, Freed LE, Vunjak-Novakovic G. Collagen in
tissue-engineered cartilage: types, structure, and crosslinks. J Cell Biochem 71, 313,
1998.
91. Shields KJ, Beckman MJ, Bowlin GL, Wayne JS. Mechanical properties and
cellular proliferation of electrospun collagen type II. Tissue Eng 10(9-10), 1510±
1517, 2004.
92. Kon E, Delcogliano M, Filardo G, Altadonna G, Marcacci M. Novel nano-
composite multi-layered biomaterial for the treatment of multifocal degenerative
cartilage lesions. Knee Surg Sports Traumatol Arthrosc May, 26, 2009.
93. Fenniri H, Mathivanan P, Vidale KL, Sherman DM, Hallenga K, Wood KV,
Stowell JG. Helical rosette nanotubes: design, self-assembly and characterization. J
Am Chem Soc 123, 3854±3855, 2001.
94. Chun AL, Moralez JG, Fenniri H, Webster TJ. Helical rosette nanotubes: a
biomimetic coating for orthopedics? Biomaterials 26, 7304±7309, 2005.
95. Chun AL, Moralez JG, Fenniri H, Webster TJ. Helical rosette nanotubes: a more
effective orthopedic implant material. Nanotechnology 15, s234±s239, 2004.
96. Fine E, Zhang L, Fenniri H, Webster TJ. Enhanced endothelial cell functions on
rosette nanotube-coated titanium vascular stents. Int J Nanomedicine 4, 91±97,
2009.
97. Chen Y, Webster TJ. Increased osteoblast functions in the presence of BMP-7 short
peptides for nanostructured biomaterial applications. J Biomed Mater Res A 91(1),
296±304, 2009.
98. Zhang L, Rakotondradany F, Myles AJ, Fenniri H, Webster TJ. Arginine-glycine-
aspartic acid modified rosette nanotube±hydrogel composites for bone tissue
engineering. Biomaterials 30(7), 1309±1320, 2009.
99. Zhang L, Chen Y, Rodriguez J, Fenniri H, Webster TJ. Biomimetic helical rosette
nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving
￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search