Biomedical Engineering Reference
In-Depth Information
orthopedic implants. Int J Nanomedicine 3(3), 323±333, 2008.
100. Tamerler C, Sarikaya M. Molecular biomimetics: nanotechnology and
bionanotechnology using genetically engineered peptides. Philos Transact A Math
Phys Eng Sci 367(1894), 1705±1726, 2009.
101. Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human
mesenchymal stem cells on oriented anofibrous scaffolds: engineering the
superficial zone of articular cartilage. Tissue Eng Part A 15(4), 913±921, 2008.
102. Jun I, Jeong S, Shin H. The stimulation of myoblast differentiation by electrically
conductive sub-micron fibers. Biomaterials 30(11), 2038±2047, 2009.
103. Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre
assemblies. Nanotechnology 17, R89±R106, 2006.
104. Shi YV, Chen C, Tsai S, Wang YJ, Lee OK. Growth of mesenchymal stem cells on
electrospun type I collagen nanofibers stem cells. J Biomater Res Part A
24(11), 2391±2397, 2006.
105. Yeo LY, Gagnon Z, Chang HC. AC electrospray biomaterials synthesis.
Biomaterials 26, 6122±6128, 2005.
106. Pareta R, Brindley A, Edirisinghe MJ, Jayasinghe SN, Luklinska ZB.
Electrohydrodynamic atomization of protein (bovine serum albumin). J Mater Sci
Mater Med 16(10), 919±925, 2005.
107. Webster TJ. Nanotechnology for the Regeneration of Hard and Soft Tissues.
Singapore: World Scientific, pp. 30±33, 2007.
108. Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on
NaOH-treated PLGA scaffolds. Biomaterials 26(16), 3075±3082, 2005.
109. Haines DE. Fundamental Neuroscience, 2nd Edition, London: Churchill
Livingstone, pp. 28±35, 2002.
110. Neuberger T, SchÈ pf B, Hofmann H, Hofmann M, Rechenberg B.
Superparamagnetic nanoparticles for biomedical applications: possibilities and
limitations of a new drug delivery system. J Materials Magnetism 293, 483±496,
2005.
111. Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, Petri-Fink A,
Hofmann H, Juillerat-Jeanneret L. Interaction of functionalized superparamagnetic
iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther 318(1), 108±
116, 2006.
112. Andrews RJ. Neuroprotection at the nanolevel ± Part II: Nanodevices for
neuromodulation ± deep brain stimulation and spinal cord injury. Ann NY Acad
Sci 1122, 185±196, 2007.
113. Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L,
Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M,
Ballerini L. Carbon nanotubes might improve neuronal performance by favouring
electrical shortcuts. Nat Nanotechnol 4(2), 126±133, 2009.
114. Chao TI, Xiang S, Chen CS, Chin WC, Nelson AJ, Wang C, Lu J. Carbon
nanotubes promote neuron differentiation from human embryonic stem cells.
Biochem Biophys Res Commun 384(4), 426±430, 2009.
115. Bardi G, Tognini P, Ciofani G, Raffa V, Costa M, Pizzorusso T. Pluronic-coated
carbon nanotubes do not induce degeneration of cortical neurons in vivo and in
vitro. Nanomedicine 5(1), 96±104, 2005.
116. Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H,
Prato M, Ballerini L. Interfacing neurons with carbon nanotubes: electrical signal
transfer and synaptic stimulation in cultured brain circuits. J Neurosci 27(26),
6931±6936, 2007.
￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search