Biology Reference
In-Depth Information
110. Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV.
Each rhodopsin molecule binds
its own arrestin. Proc Natl Acad Sci USA .
2007;104:3125- 3128.
111. Broekhuyse RM, Tolhuizen EF, Janssen AP, Winkens HJ. Photoreceptor cell-specific
localization of S-antigen in retina. Curr Eye Res . 1985;4:613 - 618.
112. Whelan JP, McGinnis JF. Light-dependent subcellular movement of photoreceptor
proteins. J Neurosci Res . 1988;20:263- 270.
113. Elias RV, Sezate SS, Cao W, McGinnis JF. Temporal kinetics of the light/dark trans-
location and compartmentation of arrestin and alpha-transducin in mouse photorecep-
tor cells. Mol Vis . 2004;10:672- 681.
114. Mendez A, Lem J, Simon M, Chen J. Light-dependent translocation of arrestin in the
absence of
rhodopsin phosphorylation and transducin signaling.
J Neurosci .
2003;23:3124- 3129.
115. Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY. Arrestin translocation is induced at a
critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin.
J Neurosci . 2006;26:1146 - 1153.
116. Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV. Arrestin-1
expression level in rods: balancing functional performance and photoreceptor health.
Neuroscience . 2011;174:37 - 49.
117. Cleghorn WM, Tsakem EL, Song X, et al. Progressive reduction of its expression in
rods reveals two pools of arrestin-1 in the outer segment with different roles in
photoresponse recovery. PLoS One . 2011;6:e22797.
118. Schubert C, Hirsch JA, Gurevich VV, Engelman DM, Sigler PB, Fleming KG. How
does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem .
1999;274:21186 - 21190.
119. Imamoto Y, Tamura C, Kamikubo H, Kataoka M. Concentration-dependent
tetramerization of bovine visual arrestin. Biophys J . 2003;85:1186- 1195.
120. Hanson SM, Van Eps N, Francis DJ, et al. Structure and function of the visual arrestin
oligomer. EMBO J . 2007;26:1726- 1736.
121. Kim M, Hanson SM, Vishnivetskiy SA, et al. Robust self-association is a common fea-
ture of mammalian visual arrestin-1. Biochemistry . 2011;50:2235- 2242.
122. Hanson SM, Dawson ES, Francis DJ, et al. A model for the solution structure of the rod
arrestin tetramer. Structure . 2008;16:924- 934.
123. Tsukamoto H, Sinha A, Dewitt M, Farrens DL. Monomeric rhodopsin is the minimal
functional unit required for arrestin binding. J Mol Biol . 2010;399:501 - 511.
124. Bayburt TH, Vishnivetskiy SA, McLeanM, et al. Monomeric rhodopsin is sufficient for
normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem .
2011;286:1420- 1428.
125. Celver J, Vishnivetskiy SA, Chavkin C, Gurevich VV. Conservation of the phosphate-
sensitive elements in the arrestin family of proteins. J Biol Chem . 2002;277:9043 - 9048.
126. Kovoor A, Celver J, Abdryashitov RI, Chavkin C, Gurevich VV. Targeted construc-
tion of phosphorylation-independent beta-arrestin mutants with constitutive activity in
cells. J Biol Chem . 1999;274:6831- 6834.
127. Gurevich VV, Pals-Rylaarsdam R, Benovic JL, Hosey MM, Onorato JJ. Agonist-
receptor-arrestin, an alternative ternary complex with high agonist affinity. J Biol Chem .
1997;272:28849 - 28852.
128. Pan L, Gurevich EV, Gurevich VV. The nature of the arrestin x receptor complex
determines the ultimate fate of the internalized receptor. J Biol Chem . 2003;278:
11623- 11632.
129. Celver J, Lowe J, Kovoor A, Gurevich VV, Chavkin C. Threonine 180 is required
for G-protein-coupled
receptor
kinase
3-
and
beta-arrestin
2-mediated
 
 
 
Search WWH ::




Custom Search