Biology Reference
In-Depth Information
29. Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV. How does
arrestin respond to the phosphorylated state of
rhodopsin?
J Biol Chem .
1999;274:11451 - 11454.
30. Gurevich VV, Gurevich EV. The molecular acrobatics of arrestin activation. Trends
Pharmacol Sci . 2004;25:105- 111.
31. Gurevich VV, Gurevich EV. The new face of active receptor bound arrestin attracts
new partners. Structure . 2003;11:1037- 1042.
32. Nair KS, Hanson SM, Mendez A, et al. Light-dependent redistribution of arrestin in
vertebrate rods is an energy-independent process governed by protein-protein interac-
tions. Neuron . 2005;46:555- 567.
33. Nair KS, Hanson SM, Kennedy MJ, Hurley JB, Gurevich VV, Slepak VZ. Direct bind-
ing of visual arrestin to microtubules determines the differential subcellular localization
of its splice variants in rod photoreceptors. J Biol Chem . 2004;279:41240- 41248.
34. Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV. Visual arrestin
binding to microtubules involves a distinct conformational change. J Biol Chem .
2006;281:9765- 9772.
35. Hanson SM, Cleghorn WM, Francis DJ, et al. Arrestin mobilizes signaling proteins to
the cytoskeleton and redirects their activity. J Mol Biol . 2007;368:375- 387.
36. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: A G protein-
coupled receptor. Science . 2000;289:739- 745.
37. Okada T, Fujiyoshi Y, SilowM, Navarro J, Landau EM, Shichida Y. Functional role of
internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad
Sci USA . 2002;99:5982- 5987.
38. Li J, Edwards PC, Burghammer M, Villa C, Schertler GF. Structure of bovine rhodop-
sin in a trigonal crystal form. J Mol Biol . 2004;343:1409- 1438.
39. Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GF. Crystal
structure of a thermally stable rhodopsin mutant. J Mol Biol . 2007;372:1179- 1188.
40. Cherezov V, Rosenbaum DM, Hanson MA, et al. High-resolution crystal structure of
an engineered human beta2-adrenergic G protein-coupled receptor. Science .
2007;318:1258- 1265.
41. Chien EYT, Liu W, Zhao Q, et al. Structure of the human dopamine D3 receptor in
complex with a D2/D3 selective antagonist. Science . 2010;330:1091- 1095.
42. Rosenbaum DM, Zhang C, Lyons JA, et al. Structure and function of an irreversible
agonist- b (2) adrenoceptor complex. Nature . 2011;469:236- 240.
43. Wu B, Chien EYT, Mol CD, et al. Structures of the CXCR4 chemokine GPCR with
small-molecule and cyclic peptide antagonists. Science . 2010;330:1066- 1071.
44. Rasmussen SG, Choi HJ, Rosenbaum DM, et al. Crystal structure of the human beta2
adrenergic G-protein-coupled receptor. Nature . 2007;450:383- 387.
45. Haga K, Kruse AC, Asada H, et al. Structure of the humanM2 muscarinic acetylcholine
receptor bound to an antagonist. Nature . 2012;482:547 - 551.
46. Kruse AC, Hu J, Pan AC, et al. Structure and dynamics of the M3 muscarinic acetyl-
choline receptor. Nature . 2012;482:552- 556.
47. Manglik A, Kruse AC, Kobilka TS, et al. Crystal structure of the m -opioid receptor
bound to a morphinan antagonist. Nature . 2012;485:321 - 326.
48. Jaakola VP, Griffith MT, Hanson MA, et al. The 2.6 angstrom crystal structure of a
human A2A adenosine receptor bound to an antagonist. Science . 2008;322:1211 - 1217.
49. Xu F, Wu H, Katritch V, et al. Structure of an agonist-bound human A2A adenosine
receptor. Science . 2011;332:322- 327.
50. Shimamura T, Shiroishi M, Weyand S, et al. Structure of the human histamine H1
receptor complex with doxepin. Nature . 2011;475:65- 70.
51. Wu H, Wacker D, Mileni M, et al. Structure of the human k -opioid receptor in
complex with JDTic. Nature . 2012;485:327- 332.
 
Search WWH ::




Custom Search