Biology Reference
In-Depth Information
52. Moukhametzianov R, Warne T, Edwards PC, et al. Two distinct conformations of
helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. Proc
Natl Acad Sci USA . 2011;108:8228 - 8232.
53. Warne T, Serrano-Vega MJ, Baker JG, et al. Structure of a beta1-adrenergic G-protein-
coupled receptor. Nature . 2008;454:486- 491.
54. DorĀ“ AS, Robertson N, Errey JC, et al. Structure of the adenosine A(2A) receptor in
complex with ZM241385 and the xanthines XAC and caffeine. Structure .
2011;19:1283- 1293.
55. Hubbell WL, Altenbach C, Hubbell CM, Khorana HG. Rhodopsin structure, dynam-
ics, and activation: a perspective from crystallography, site-directed spin labeling, sulf-
hydryl reactivity, and disulfide cross-linking. Adv Protein Chem . 2003;63:243 - 290.
56. Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL. High-resolution
distance mapping in rhodopsin reveals the pattern of helix movement due to activation.
Proc Natl Acad Sci USA . 2008;105:7439 - 7444.
57. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. Requirement of rigid-
body motion of transmembrane helices for light activation of rhodopsin. Science .
1996;274:768- 770.
58. Resek JF, Farahbakhsh ZT, Hubbell WL, Khorana HG. Formation of the meta II
photointermediate is accompanied by conformational changes in the cytoplasmic sur-
face of rhodopsin. Biochemistry . 1993;32:12025 - 12032.
59. Farahbakhsh ZT, Ridge KD, Khorana HG, Hubbell WL. Mapping light-dependent
structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin:
a site-directed spin labeling study. Biochemistry . 1995;34:8812 - 8819.
60. Scheerer P, Park JH, Hildebrand PW, et al. Crystal structure of opsin in its G-protein-
interacting conformation. Nature . 2008;455:497 - 502.
61. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP. Crystal structure of the
ligand-free G-protein-coupled receptor opsin. Nature . 2008;454:183 - 187.
62. Choe HW, Kim YJ, Park JH, et al. Crystal structure of metarhodopsin II. Nature .
2011;471:651- 655.
63. Deupi X, Edwards P, Singhal A, et al. Stabilized G protein binding site in the structure
of constitutively active metarhodopsin-II. Proc Natl Acad Sci USA . 2012;109:119 - 124.
64. Lebon G, Warne T, Edwards PC, et al. Agonist-bound adenosine A2A receptor struc-
tures reveal common features of GPCR activation. Nature . 2011;474:521 - 525.
65. Rasmussen SG, Choi HJ, Fung JJ, et al. Structure of a nanobody-stabilized active state
of the b (2) adrenoceptor. Nature . 2011;469:175 - 180.
66. Rasmussen SG, DeVree BT, Zou Y, et al. Crystal structure of the b 2 adrenergic
receptor-Gs protein complex. Nature . 2011;477:549 - 555.
67. Chung KY, Rasmussen SG, Liu T, et al. Conformational changes in the G protein Gs
induced by the b 2 adrenergic receptor. Nature . 2011;477:611- 615.
68. Kobilka BK. G protein coupled receptor structure and activation. Biochim Biophys Acta .
2007;1768:794 - 807.
69. Kobilka BK. Cold SpringHarbor Asia membrane proteinmeeting, May 16-20, 2011; 79.
70. Warne T, Moukhametzianov R, Baker JG, et al. The structural basis for agonist and
partial agonist action on a
(1)-adrenergic receptor. Nature . 2011;469:241- 244.
71. Vishnivetskiy SA, Gimenez LE, Francis DJ, et al. Few residues within an extensive
binding interface drive receptor interaction and determine the specificity of arrestin
proteins. J Biol Chem . 2011;286:24288 - 24299.
72. Kim M, Vishnivetskiy SA, Van Eps N, et al. Conformation of receptor-bound visual
arrestin. Proc Natl Acad Sci USA . 2012;109:18407 - 18412.
73. Hanson SM, Francis DJ, Vishnivetskiy SA, et al. Differential interaction of spin-labeled
arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA .
2006;103:4900 - 4905.
b
Search WWH ::




Custom Search