Biology Reference
In-Depth Information
74. Whelan JP, McGinnis JF. Light-dependent subcellular movement of photoreceptor
proteins. J Neurosci Res . 1988;20:263 - 270.
75. Mirshahi M, DeKozak Y, Faure JP, Brisson JP, Falcon J, Collin JP. Influence of light on
S-antigen localization in rods and cones and immunopathogenicity in rats. In:
Secchi AG, Fregona IA, eds. Modern Trends in Immunology and Immunopathology of the
Eye . Milano: Masson; 1989:45 - 49.
76. McGinnis JF, Matsumoto B, Whelan JP, Cao W. Cytoskeleton participation in subcel-
lular trafficking of signal transduction proteins in rod photoroeceptor cells. J Neurosci
Res . 2002;67:290 - 297.
77. Nair KS, Hanson SM, Kennedy MJ, Hurley JB, Gurevich VV, Slepak VZ. Direct bind-
ing of visual arrestin to microtubules determines the differential subcellular localization
of its splice variants in rod photoreceptors. J Biol Chem . 2004;279:41240- 41248.
78. Schleicher A, Kuhn H, Hofmann KP. Kinetics, binding constant, and activation energy
of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry .
1989;28:1770- 1775.
79. DeFea KA. Beta-arrestins as regulators of signal termination and transduction: How do
they determine what to scaffold? Cell Signal . 2011;23:621- 629.
80. Volker KW, Reinitz CA, Knull HR. Glycolytic enzymes and assembly of microtubule
networks. Comp Biochem Physiol B Biochem Mol Biol . 1995;112:503- 514.
81. Srere PA, Knull HR. Location-location-location. Trends Biochem Sci . 1998;23:
319- 320.
82. Song X, Coffa S, Fu H, Gurevich VV. How does arrestin assemble MAPKs into a sig-
naling complex? J Biol Chem . 2009;284:685 - 695.
83. Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV. Ubiquitin ligase
parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Bio-
chemistry . 2011;50:3749- 3763.
84. McDonald PH, Chow CW, Miller WE, et al. Beta-arrestin 2: a receptor-regulated
MAPK scaffold for the activation of JNK3. Science . 2000;290:1574- 1577.
85. Luttrell LM, Roudabush FL, Choy EW, et al. Activation and targeting of extracellular
signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA .
2001;98:2449- 2454.
86. Bruchas MR, Macey TA, Lowe JD, Chavkin C. Kappa opioid receptor activation of
p38 mapk is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem .
2006;281:18081 - 18089.
87. Zhan X, Kaoud TS, Dalby KN, Gurevich VV. Nonvisual arrestins function as simple
scaffolds assembling the MKK4-JNK3alpha2 signaling complex. Biochemistry . 2011;
50:10520- 10529.
88. Song X, Gurevich EV, Gurevich VV. Cone arrestin binding to JNK3 and Mdm2: con-
formational preference and localization of
interaction sites.
J Neurochem . 2007;
103:1053- 1062.
89. Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV. Visual and both
non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and
relocalize them from the nucleus
to the cytoplasm.
J Biol Chem . 2006;281:
21491- 21499.
90. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by
ubiquitination of activated B2 adrenergic receptor and B-arrestin. Science . 2001;294:
1307- 1313.
91. Wu N, Hanson SM, Francis DJ, et al. Arrestin binding to calmodulin: a direct inter-
action between two ubiquitous signaling proteins. J Mol Biol . 2006;364:955 - 963.
92. Huang S-P, Brown BM, Craft CM. Visual arrestin 1 acts as a modulator for
N-ethylmaleimide-sensitive factor in the photoreceptor synapse. J Neurosci . 2010;
30:9381- 9391.
 
 
Search WWH ::




Custom Search