Biology Reference
In-Depth Information
54. Jager S, Palczewski K, Hofmann KP. Opsin/all-trans-retinal complex activates
transducin by different mechanisms than photolyzed rhodopsin. Biochemistry . 1996;
35:2901 - 2908.
55. Lamb TD, Pugh Jr EN. Dark adaptation and the retinoid cycle of vision. Prog Retin Eye
Res . 2004;23:307 - 380.
56. Maeda A, Maeda T, Golczak M, et al. Involvement of all-trans-retinal in acute light-
induced retinopathy of mice. J Biol Chem . 2009;284:15173 - 15183.
57. Peet JA, Bragin A, Calvert PD, et al. Quantification of the cytoplasmic spaces of living
cells with EGFP reveals arrestin-EGFP to be in disequlibrium in dark adapted rod pho-
toreceptors. J Cell Sci . 2004;117:3049- 3059.
58. Calvert PD, Schiesser WE, Pugh EN. Diffusion of a soluble protein, photoactivatable
GFP, through a sensory cilium. J Gen Physiol . 2010;135:173 - 196.
59. Najafi M, Maza NA, Calvert PD. Steric volume exclusion sets soluble protein concen-
trations in photoreceptor sensory cilia. Proc Natl Acad Sci USA . 2012;109:203 - 208.
60. Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV.
Each rhodopsin molecule binds
its own arrestin. Proc Natl Acad Sci USA .
2007;104:3125 - 3128.
61. Nair KS, Hanson SM, Mendez A, et al. Light-dependent redistribution of arrestin in
vertebrate rods is an energy-independent process governed by protein - protein inter-
actions. Neuron . 2005;46:555 - 567.
62. Shilton BH, McDowell JH, Smith WC, Hargrave PA. The solution structure and acti-
vation of visual arrestin studied by small-angle X-ray scattering. Eur J Biochem .
2002;269:3801 - 3809.
63. Imamoto Y, Tamura C, Kamikubo H, Kataoka M. Concentration-dependent
tetramerization of bovine visual arrestin. Biophys J . 2003;85:1186 - 1195.
64. Hanson SM, Van Eps N, Francis DJ, et al. Structure and function of the visual arrestin
oligomer. EMBO J . 2007;26:1726 - 1736.
65. Lyubarsky AL, Daniele LL, Pugh EN. From candelas to photoisomerizations in the
mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the
major components of the mouse ERG. Vision Res . 2004;44:3235 - 3251.
66. Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV. Visual arrestin
binding to microtubules involves a distinct conformational change. J Biol Chem .
2006;281:9765 - 9772.
67. Hanson SM, Cleghorn WM, Francis DJ, et al. Arrestin mobilizes signaling proteins to
the cytoskeleton and redirects their activity. J Mol Biol . 2007;368:375 - 387.
68. Smith WC, Bolch S, Dugger DR, et al. Interaction of arrestin with enolase1 in pho-
toreceptors. Invest Ophthalmol Vis Sci . 2011;52:1832 - 1840.
69. Peterson JJ, Orisme W, Fellows J, et al. A role for cytoskeletal elements in the light-
driven translocation of proteins in rod photoreceptors. Invest Ophthalmol Vis Sci .
2005;46:3988- 3998.
70. Reidel B, Goldmann T, Giessl A, WolfrumU. The translocation of signaling molecules
in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
Cell Motil Cytoskel . 2008;65:785 - 800.
71. Insinna C, Pathak N, Perkins B, Drummond I, Besharse JC. The homodimeric kinesin,
Kif17, is essential for vertebrate photoreceptor sensory outer segment development.
Dev Biol . 2008;316:160 - 170.
72. Orisme W, Li J, Goldmann T, Bolch S, Wolfrum U, Smith WC. Light-dependent
translocation of arrestin in rod photoreceptors is signaled through a phospholipase
C cascade and requires ATP. Cell Signal . 2010;22:447 - 456.
73. Bornancin F, Franco M, Bigay J, Chabre M. Functional modifications of transducin
induced by cholera or pertussis-toxin-catalyzed ADP-ribosylation. Eur J Biochem .
1992;210:33 - 44.
 
Search WWH ::




Custom Search