Biology Reference
In-Depth Information
42. Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV. Bright
monomeric photoactivatable red fluorescent protein for two-color super-resolution
sptPALM of live cells. J Am Chem Soc 2010;132:6481-91.
43. van Thor JJ, Gensch T, Hellingwerf KJ, Johnson LN. Phototransformation of green
fluorescent protein with UV and visible light leads to decarboxylation of glutamate
222. Nat Struct Mol Biol 2002;9:37-41.
44. Miesenb¨ck G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic trans-
mission with pH-sensitive green fluorescent proteins. Nature 1998;394:192-5.
45. Tantama M, Hung YP, Yellen G. Imaging intracellular pH in live cells with a genet-
ically encoded red fluorescent protein sensor. J Am Chem Soc 2011;133:10034-7.
46. Hanakam F, Albrecht R, Eckerskorn C, Matzner M, Gerisch G. Myristoylated and
non-myristoylated forms of the pH sensor protein hisactophilin II: intracellular shut-
tling to plasma membrane and nucleus monitored in real time by a fusion with green
fluorescent protein. EMBO J 1996;15:2935-43.
47. Ormo M, Cubitt A, Kallio K, Gross L, Tsien R, Remington S. Crystal structure of the
Aequorea victoria green fluorescent protein. Science 1996;273:1392-5.
48. Ehrig T, O'Kane DJ, Prendergast FG. Green-fluorescent protein mutants with altered
fluorescence excitation spectra. FEBS Lett 1995;
:163-6.
49. Heim R, Tsien RY. Engineering green fluorescent protein for improved brightness,
longer wavelengths and fluorescence resonance energy transfer. Curr Biol 1996;
6:178-82.
50. Kogure T, Karasawa S, Araki T, Saito K, Kinjo M, Miyawaki A. A fluorescent variant
of a protein from the stony coral Montipora facilitates dual-color single-laser fluores-
cence cross-correlation spectroscopy. Nat Biotechnol 2006;24:577-81.
51. Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS. Mechanism and
cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem
2000;275:6047-50.
52. Dimitrov D, He Y, Mutoh H, Baker BJ, Cohen L, Akemann W, et al. Engineering and
characterization of an enhanced fluorescent protein voltage sensor. PLoS ONE 2007;2:
e440.
53. Siegel MS, Isacoff EY. A genetically encoded optical probe of membrane voltage. Neu-
ron 1997;19:735-41.
54. Kn¨pfel T, Diez-Garcia J, Akemann W. Optical probing of neuronal circuit dynamics:
genetically encoded versus classical fluorescent sensors. Trends Neurosci 2006;29:160-6.
55. Lundby A, Mutoh H, Dimitrov D, Akemann W, Kn¨pfel T. Engineering of a genet-
ically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing
movements. PLoS ONE 2008;3:e2514.
56. Nagai T, Sawano A, Park ES, Miyawaki A. Circularly permuted green fluorescent pro-
teins engineered to sense Ca2 þ . Proc Natl Acad Sci USA 2001;98:3197-202.
57. Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca(2 þ ) probe composed of a
single green fluorescent protein. Nat Biotechnol 2001;19:137-41.
58. Zhao Y, Araki S, Wu J, Teramoto T, Chang Y-F, Nakano M, et al. An expanded
palette of genetically encoded Ca þ indicators. Science 2011;333:1888-91.
59. Miyawaki A, Llopis J, Heim R, McCaffery J, Adams J, Ikura M, et al. Fluorescent
indicators for Ca2
367
þ
based on green fluorescent proteins and calmodulin. Nature
:882-7.
60. Romoser V, Hinkle P, Persechini A. Detection in living cells of Ca2 þ -dependent
changes in the fluorescence emission of an indicator composed of two green fluorescent
protein variants linked by a calmodulin-binding sequence. A new class of fluorescent
indicators. J Biol Chem 1997;272:13270-4.
61. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS,
Terskikh AV, et al. Genetically encoded fluorescent indicator for intracellular hydrogen
peroxide. Nat Methods 2006;3:281-6.
1997;
388
Search WWH ::




Custom Search